Health Technology Assessment of various RT-PCR kits/methods for the diagnosis of Influenza A/H1N1pdm09 virus in all age group patients in India.

Principal Investigator

Dr. Manohar Lal Choudhary, National Institute of Virology, Pune

Co-Principal Investigator

Dr. Anita Shete National Institute of Virology, Pune and Dr. Shalu Jain HTAIn, DHR, New Delhi

Correspondence Address:

ICMR-National Institute of Virology 20A, Dr. Ambedkar Road, Camp Pune-411001, Maharashtra, India. Phone no- 020-26006290

List of Abbreviations

AIIMS	All India Institute of Medical Sciences
CDC	Centers for Disease Control and Prevention
DHR	Department of Health Research
FN	False Negative
FP	False Positive
GOI	Government of India
НА	Haemagglutinin
НТА	Health Technology Assessment
ICMR	Indian council of Medical Research
ILI	Influenza-like illness
INR	Indian Rupee
IPD	In Patient Department
NA	Neuraminidase
NCDC	National Centre for Disease Control
NIV	National Institute of Virology
NPV	negative predictive values
OPD	Out Patient Department
PICOS	Population - intervention - comparator - outcomes - study design
PPV	Positive predictive values
PRISMA	Preferred Reporting Items for Systematic reviews and Meta-analyses
RIDT	Rapid Influenza Diagnostic tests
rtRT-PCR	Real-time reverse transcriptase polymerase chain reaction
TN	True Negative
ТР	True Positive
VRDL	Viral Research & Diagnostic Laboratories
WHO	World Health Organization

Contents

Executive Summary	1
1. Introduction	3
1.1 Background	
1.2 Epidemiology: Indian Scenario	
1.3 Diagnosis and Treatment Methods Available in India	
2. Rational of the study	8
2.1 Policy Question	
2.2 Research Question	
2.3 Aim & Objectives	
3. Methods	10
3.1 PICO	
3.2 Systematic Literature Review	
3.3 Primary Data Collection	
4. Results	18
4.1 Results from Literature Review	
4.2 Results from Validation Study	
4.3 Primary Costing Study	
4.4 Final Summary Table	
4.5 Study Recommendations	
5. Strengths & Limitations of The Study	31
Acknowledgement	31
References	32
Annexures 1: Pandemic H1N1/09 Assay kit - Invitrogen	34
Annexures 2: Artus- Qiagen	37
Annexures 3: TRUPCR- 3BBlackBio Bhopal	40
Annexures 4: Xpert Flu- Cepheid	43

Executive Summary

Lower respiratory tract viral infections, including those due to influenza, are among the most common infectious diseases in humans and they are associated with significant morbidity and mortality. Seasonal influenza viruses infect 5–15% of the human population each year, resulting in ~500,000 deaths worldwide. Influenza is vaccine-preventable and antiviral treatment is available. A significant number of severely ill patients infected with H1N1pdm09 requiring intensive care and mechanical ventilation for severe viral pneumonia.

Nucleic acid tests are sensitive and specific and provide a rapid diagnosis, making them invaluable for patient and outbreak management. Real-time polymerase chain reaction (PCR) can be considered as gold standard for detection of influenza viruses due to its high sensitivity and specificity. Real time RT-PCR developed by WHO is considered as gold standard method for influenza A H1N1pdm09 diagnosis from Nasal/throat swabs.

Currently in India, suspected patients are screened by clinician and prescribing Oseltamavir drug without waiting for test report. Government of India recommended testing of samples from suspected patients of category C only. Indiscriminate use of anti influenza drug may develop resistance in virus. Limited labs are testing H1N1pdm09 virus in country and have not been able to effectively implement at large programs due to lack of adequate infrastructure, trained manpower and limited resources and high costing of kits. Sensitivity, specificity and cost of different tests have huge variation. The purpose of this assessment was to appraise the current evidence for the clinical effectiveness (in terms of sensitivity and specificity) and costing of kits against CDC/WHO real time RT-PCR for diagnosis of influenza A/H1N1pdm09 in India.

Sensitivity and specificity was obtained from kits (n=4) evaluated at NIV. Thermo Fisher Scientific (Invitrogen) Pandemic H1N1/09 Assay kit sensitivity and specificity for Influenza A target of A(H1N1)pdm09 virus was 100% (95% CI: 91.8, 100) and 100% (95% CI: 96.53, 100) respectively. Sensitivity and specificity for Influenza Hemagglutinin H1 target of A/H1N1pdm09 virus was 100% (95% CI: 91.8, 100) and 100% (95% CI: 96.53, 100) respectively. Sensitivity and specificity for Influenza A target of A (H3N2) virus was 100% (95% CI: 97.06, 100) respectively.

TRUPCR H1N1 kit (3BBlackBio, Bhopal) sensitivity and specificity for Influenza A target was 100% (95% CI: 95.06, 100) and 94.87% (95% CI: 87.54, 97.99) respectively. Sensitivity and specificity for Influenza H1 target of A(H1N1)pdm09 virus was 94.44% (95% CI: 84.89, 98.09) and 100% (95% CI: 96.23, 100) respectively.

Qiagen artus Infl./H1 LC/RG RT-PCR Kit sensitivity and specificity for Influenza target was 84.78% (95% CI: 76.06, 90.71) and 96.61% (95% CI: 88.46, 99.07) respectively. Sensitivity and specificity for Influenza H1 target of A(H1N1)pdm09 virus was 94.55% (95% CI: 85.15, 98.13) and 98.96% (95% CI: 94.33, 99.82) respectively.

Cepheid Xpert[®] Flu kit sensitivity and specificity for FluA target of A(H1N1)09pdm virus tested was 100% (95% CIs: 88.65, 100) and 99% (95% CIs: 95.39, 99.85) respectively. Sensitivity and specificity for influenza hemagglutinin H1 target of A/H1N1pdm09 virus tested was 93.33% (95% CIs: 78.68, 98.15) and 100% (95% CIs: 96.87, 100) respectively. Sensitivity and specificity for Influenza B virus was 96.67% (95% CIs: 83.33, 99.41) and 100% (95% CIs: 96.87, 100) respectively. Sensitivity and specificity for Flu A target of A (H3N2) virus tested was 63% (95% CIs: 38.64, 81.52) and 100% (95% CIs: 97.19, 100) respectively.

Influenza A/H1N1pdm09 testing cost (Rs) per sample for invitrogen kit was 2015, Qiagen kit 1902, TruPCR kit 1660, and Cepheid kit 4342. In view of highest sensitivity and specificity among all the kits evaluated in this study, Invitrogen kit is recommended for diagnosis of influenza A/H1N1pdm09 virus from clinical samples.

1. BACKGROUND:

Lower respiratory tract viral infections, including those due to influenza, are among the most common infectious diseases in humans and they are associated with significant morbidity and mortality [Lim et al 2016]. Despite decades of surveillance and pharmaceutical and non-pharmaceutical interventions, seasonal influenza viruses continue to cause epidemics around the world each year. Seasonal influenza viruses infect 5–15% of the human population each year, resulting in ~500,000 deaths worldwide [Stohr K 2002]. The annual recurrence of seasonal epidemics is attributed to the continued evolution of seasonal influenza viruses, which enables them to escape the immunity that is induced by prior infections or vaccination, and to the ability of those viruses to be transmitted efficiently from human-to-human via respiratory droplets, direct contact and fomites. Influenza is vaccine-preventable and effective in preventing the spread of seasonal influenza virus epidemics, but they must be updated regularly to keep pace with the evolution of the circulating viruses.

Influenza viruses belong to the *Orthomyxoviridae* family and are divided into types A, B, C and D. Influenza types A and B are responsible for epidemics of respiratory illness that are often associated with increased rates of hospitalization and death. Influenza type A and B viruses have 8 genes that code for 11 proteins, including the surface proteins haemagglutinin (HA) and neuraminidase (NA). Influenza A viruses are further classified into subtypes based on the combination of haemagglutinin (HA) and neuraminidase (NA) and neuraminidase (NA) glycoproteins on their surfaces. To date, 18 HA subtypes and 11 NA subtypes have been identified.

The hallmark of human influenza viruses is their ability to undergo antigenic change, which occurs by two ways: **Antigenic drift** and **Antigenic shift**.

Antigenic drift– is a process of gradual and relatively continuous change in the viral HA and NA proteins. It results from the accumulation of point mutations in the HA and NA genes during viral replication. Both influenza type A and B viruses undergo antigenic drift, leading to new virus strains. The emergence of these new strains necessitates the frequent updating of influenza vaccine virus strains. Because antibodies to previous influenza infections may not provide full protection against the new strains resulting from antigenic drift, individuals can have many influenza infections over a lifetime.

Antigenic shift– in addition to antigenic drift, influenza type A viruses can also undergo a infrequently and unpredictably type of change called antigenic shift. A shift has occurred when an influenza type A virus emerges among humans bearing either a HA protein or a combination of HA and NA proteins that have not been circulating among humans in recent years.

In India, peaks of influenza were observed during July-September coinciding with monsoon in cities Delhi and Lucknow (north), Pune (west), Allaphuza (southwest), Nagpur (central), Kolkata (east) and Dibrugarh (northeast), whereas Chennai and Vellore (southeast) revealed peaks in October-November, coinciding with the return monsoon months in these cities. In Srinagar (Northern most city at 34°N latitude) influenza circulation peaked in January-March in winter months (Kaul et al 2014, Chadha et al 2015).

Antiviral treatment is available and effective for influenza if the disease is identified early in the course of illness, so rapid and accurate laboratory diagnosis is particularly important in both the inpatient and outpatient settings. The rapid and accurate diagnosis of the underlying pathogen is crucial for establishing good clinical practices aimed at reducing morbidity and mortality. In addition, knowing the etiologic agent of these infections can result in significant improvement in patient management by permitting the judicious use of antiviral agents in an era where antiviral resistance is continuing to increase. Epidemics of influenza occur almost every year in temperate climates, the rates and severity of illness caused can vary substantially from year to year. The severity of annual epidemics is affected by several factors including the types, subtypes and strains of circulating viruses, and the level of protective antibodies in the general population.

Nair et al (2013) estimated that in 2010, 11.9 million (95% CI 10.3-13.9 million) episodes of severe and 3.0 million (2.1-4.2 million) episodes of very severe ALRI resulted in hospital admissions in young children worldwide. They estimated that roughly 265,000 (95% CI 160,000-450,000) in-hospital deaths took place in young children, with 99% of these deaths in developing countries.

Influenza was associated with 10% (95% CI 8%-11%) of respiratory hospitalizations in children <18 y worldwide, ranging from 5% (95% CI 3%-7%) among children <6 mo to 16% (95% CI 14%-20%) among children 5-17 y (Lafond et al 2016). On average, estimated influenza results in approximately 374,000 (95% CI 264,000 to 539,000) hospitalizations in

children <1 y-of which 228,000 (95% CI 150,000 to 344,000) occur in children <6 mo-and 870,000 (95% CI 610,000 to 1,237,000) hospitalizations in children <5 y annually. Influenza-associated hospitalization rates were more than three times higher in developing countries than in industrialized countries (150/100,000 children/year versus 48/100,000) (Lafond et al 2016).

1.2 Epidemiology: Indian Scenario

A significant number of severely ill patients infected with H1N1pdm09 requiring intensive care and mechanical ventilation for severe viral pneumonia. Pandemic H1N1 virus had significantly higher risk of hospitalization than those positive for seasonal influenza-A viruses (Mishra et al 2010). The rapidity with which the pandemic (H1N1) 2009 virus spread highlighted the need for timely and effective surveillance systems to detect emerging viruses with pandemic potential, and the need for standard platforms for data sharing and dissemination.

Influenza surveillance was carried out in patients with influenza-like illness (ILI) presenting at All India Institute of Medical Sciences (AIIMS), New Delhi. Of the 3264 samples tested, 541 (17%) were positive for influenza viruses, of which 221 (41%) were pandemic Influenza A(H1N1)pdm09, 168 (31%) were seasonal influenza A, and 152 (28%) were influenza B (Broor et al 2012). Influenza A/H1N1pdm09 and influenza B were found in 58% and 42% samples respectively from November 2012 to Feb 2013 in Kashmir, India (Koul et al., 2013)

Population-based active surveillance in India showed higher incidence rates for influenza A(H1N1)pdm09 among children during pandemic versus postpandemic periods (345 vs. 199/1,000 person-years), whereas adults had higher rates during postpandemic versus pandemic periods (131 vs. 69/1,000 person-years) (Broor et al 2012).

Chadha et al (2013) conducted a population-based study to estimate the incidence of laboratory confirmed influenza-associated hospitalizations in a rural community in Pune, western India during pandemic and post pandemic periods (May 2009-April 2011). Among 9,426 hospitalizations, 3,391 (36%) patients were enrolled; 665 of 3,179 (20.9%) tested positive for influenza. Of 665 influenza positives, 340 (51%) were pandemic A(H1N1)pdm09 and 327 (49%) were seasonal, including A/H3 (16%), A/H1 (3%) and influenza B (30%).The proportion of patients with influenza peaked during August 2009 (39%) and 2010 (42%). The adjusted annual incidence of influenza hospitalizations was 46.8/10,000 during pandemic and

40.5/10,000 during post-pandemic period with comparable incidence of A(H1N1)pdm09 during both periods (18.8 and 20.3, respectively). The incidence of both H1N1pdm09 virus and seasonal hospitalized influenza disease was highest in the 5-29 year olds.

Hirve et al (2015) conducted a multi-site population-based surveillance study to estimate and compare rates of influenza-associated hospitalization at Ballabgarh and Vadu during 2010-2012. Healthcare utilization surveys (HUS) showed that 69% and 67% of hospitalizations occurred at study facilities at Ballabgarh and Vadu, respectively. The proportion of patients with influenza was higher at Vadu than Ballabgarh annually (2010: 21% vs. 5%, p < 0.05; 2011: 18% vs. 5%, p < 0.05; 2012: 23% vs. 5%, p < 0.05). Annual adjusted influenza-associated hospitalization rates were 5-11 fold higher in Vadu (20.3-51.6 per 10,000) vs Ballabgarh (4.4-6.3 per 10,000). At both sites, influenza A/H1N1pdm09 and B predominated during 2010, A/H3N2 and B during 2011, and A/H1N1pdm09 and B during 2012.

1.3 Diagnosis and Treatment methods available in India

Nucleic acid tests are sensitive and specific and provide a rapid diagnosis, making them invaluable for patient and outbreak management. Real-time polymerase chain reaction (PCR) can be considered the gold standard for detection of influenza viruses due to its high sensitivity and specificity. Real time RT-PCR developed by WHO is considered as gold standard method for influenza A H1N1pdm09 diagnosis from Nasal/throat swabs.

In India, all the central and state govt labs are testing suspected H1N1pdm09 cases using real time RT-PCR test using H1N1pdm09 assay kit developed by WHO collaborating centre CDC Atlanta USA and licensed to Invitrogen BioServices for manufacturing and marketing. Newer version of CDC kit developed in 2015 and licensed to Integrated DNA Technologies for manufacturing. Whenever required, National Institute of Virology, Pune or NCDC, Delhi centrally procure the required reagents (H1N1pdm09 assay kit, RT-PCR kit, Nucleic acid extraction kit and viral transport media) and distributing to the NIV, VRDL and NCDC network central govt labs. State govt labs and private labs are procuring reagents at their own. In India, all the states have Influenza testing facility by real time RT-PCR.

All individuals seeking consultations for flu-like symptoms screened at healthcare facilities, both Government and private or examined by a doctor and categorized into A, B and C. In

order to prevent and contain outbreaks of Influenza, the following guidelines for screening, testing and isolation are to be followed (https://ncdc.gov.in/showfile.php?lid=361):

Category- A (uncomplicated/mild):

- Symptomatology: Patients with mild fever and cough/ sore throat with or without body aches, headache, diarrhea and vomiting will be categorized as Category-A.
- Diagnostic test: Testing of such patients (Category-A) for Influenza is not required
- •Treatment: They do not require Oseltamivir and should be treated for the symptoms mentioned above. The patients should be monitored for their progress and reassessed at 24 to 48 hours by the doctor.
- Isolation: Patients should confine themselves at home and avoid mixing up with public and high-risk members in the family

Category-B (uncomplicated but severe symptoms / high risk groups):

- ✤ In addition to all the signs and symptoms mentioned under Category-A, if the patient has high grade fever (≥102 F) and severe sore throat
- In addition to all the signs and symptoms mentioned under Category-A, individuals having one or more of the following high-risk conditions
 - 1. Age \geq 65 years
 - 2. Pregnancy (including up to two weeks post-partum)
 - 3. Infants and Children aged \leq 5 years (especially \leq 2 years of age)
 - 4. Chronic respiratory disease
 - 5. Chronic heart, kidney, liver or neurological disease
 - 6. Diabetes mellitus
 - 7. Blood disorders (including haemoglobinopathies)
 - Persons with immunosuppression (including HIV/ AIDS & use of long term (≥2 weeks) corticosteroids, Post-transplant patients)
 - 9. Extreme obesity (BMI \ge 40 kg/m²)
 - 10. Malignancy
- Diagnostic test: Testing of the Category-B patient for Influenza is not required.
- Treatment: They should receive Oseltamivir along with symptomatic treatment.
- Isolation: All patients of Category-B should confine themselves at home and avoid mixing with public and high-risk members in the family.

Category-C (Complicated):

• Symptomatology: In addition to the above signs and symptoms of Category-A and Category-

B, if the patient has one or more of the following: Symptoms and signs of complicated influenza Symptoms

Symptoms	Signs
Breathlessness	Tachypnoea
Hemoptysis	SpO2<90%
Altered mental status	Hypotension
Somnolence and Poor feeding (in children)	Reduced urine output
Seizures	Cyanosis
Decreased urine output	
Persistence or worsening of initial symptoms	
beyond 72 hours	
Worsening of underlying chronic conditions like	
Diabetes Mellitus, Chronic Kidney Disease etc.	

• **Diagnostic test:** These patients should be tested for influenza; start empirical antiviral therapy (oseltamivir) while results are pending

• **Treatment:** immediate hospitalization and treatment.

2. Rational of the study:

Indiscrimine use of anti influenza drug may develop resistance in virus. Limited labs are testing H1N1pdm09 virus in country and have not been able to effectively implement at large programs due to lack of adequate infrastructure, trained manpower and limited resources and high costing of kits. Sensitivity, specificity and cost of different molecular tests exhibits huge variation. The purpose of this assessment was to appraise the current evidence for the clinical effectiveness (in terms of sensitivity and specificity) and cost-effectiveness of different RT-PCR kits against CDC/WHO real time RT-PCR for diagnosis of influenza A/H1N1pdm09 in India.

2.1 POLICY QUESTION:

Which RT-PCR based test should be used as diagnostic test for H1N1pdm09 virus in India?

2.2 RESEARCH QUESTION:

- 1. What is the diagnostic effectiveness and which is cost effective testing strategy/protocol for diagnosis of Influenza A/H1N1pdm09 virus in India?
- 2. What will be the benefit of introduction of Influenza A/H1N1pdm09 virus diagnosis in India medical management or/and in public health decision-making?
- 3. How feasible is introduction of large scale Influenza A/H1N1pdm09 virus diagnostic program in India?

2.3 AIM & OBJECTIVES:

- 1. To assess sensitivity and specificity of various real time RT-PCR assays using as a diagnostic test for H1N1pdm09 virus in India over CDC real time RT-PCR.
- 2. To assess the cost-effectiveness of the various real time RT-PCR assays using as a diagnostic test for H1N1pdm09 virus in India over CDC real time RT-PCR.
- 3. To study the turnaround time (speed of diagnosis) of various diagnostic tests.
- 4. To assess the equity aspects of introducing RT-PCR method for H1N1 diagnosis as standard practice.

3. METHODOLOGY:

PICO criteria used for study were as given below:

3.1 PICO

- Population: All age group patients with influenza like illness.
- o Intervention: Real time RT-PCR based methods/commercial kits
- Comparator: Centre for Disease Control and Prevention (CDC) protocol as a gold standard.
- Outcomes: Clinical effectiveness (sensitivity & specificity), diagnostic accuracy and cost effectiveness of real time RT-PCR based methods/commercial kits.

3.2 Clinical Effectiveness (Sensitivity & Specificity) Literature Review

The research methodology was designed using PRISMA-P (Preferred Reporting Items for Systematic reviews and Meta-analyses Protocols) statement guidelines including the preparation of a pre-specified protocol and analysis plan.

1. Databases & Sources:

Comprehensive electronic searches were undertaken to identify relevant reports of published studies from April 2009 to assess the diagnostic performance (in terms of sensitivity and specificity) and cost-effectiveness of the test. Major electronic databases searched were Pubmed, EMBASE, Wiley Online Library, Pubmed Central (PMC), U.S. National Library of Medicine (NLM), Cochrane Database of Systematic Reviews (CDSR), Centre for Reviews & Dissemination (CRD-NIHR) including Database of Abstracts of Reviews of Effects (DARE) Health Technology Assessment Database (HTA) and NHS Economic Evaluation database (NHS EED). In addition to literature review from electronic databases, efforts have also been made to collect relevant information from manufacturer's website including their reports and supplementary data related to their products.

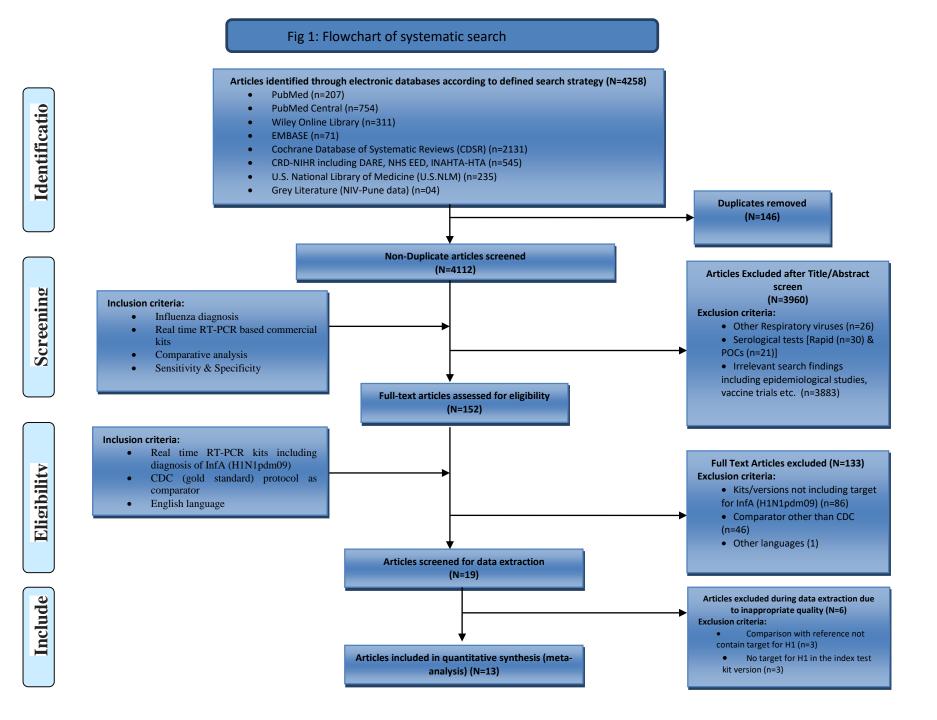
2. <u>Electronic Search Strategy</u>:

Keeping in view the research question, specific keywords were selected and strategies were made using conjunctions and linking words like 'AND', 'OR', 'NOT'. Various combinations of keywords and conjunctions were attempted applying a range of search filters like article type, date range searched; availability of text and species etc. and the strategy giving maximum relevant output was finally selected. An individual search strategy was made for each electronic database searched. The electronic databases were

last searched on 13 August 2019. The final search strategy selected to perform Pubmed database search is given in the **Table 1**.

- 3. <u>Study Selection</u>: The results/outcomes of the search conducted using different databases were further selected on the basis of Inclusion and Exclusion criteria designed at the time of protocol preparation. Studies were selected for inclusion/exclusion through a two-stage process as illustrated in PRISMA flowchart (**Fig 1**). The inclusion and exclusion criteria opted for the study selection was as follows:
 - **Inclusion criteria:** The studies were included on the basis of PICOS design which includes the following criteria:
 - Population: All age group patients with influenza like illness.
 - o Intervention: Real time RT-PCR based methods/commercial kits
 - Comparator: Centre for Disease Control and Prevention (CDC) protocol as a gold standard.

• Outcomes: Clinical effectiveness (sensitivity & specificity), diagnostic accuracy and cost effectiveness of real time RT-PCR based methods/commercial kits.


- Timing: Published between April 01, 2009 to June 21, 2019.
- **Exclusion criteria:** The studies which were found irrelevant in relation to the research question were excluded. The criteria opted for exclusion is as follows:
 - Rapid Influenza Diagnostic tests (RIDTs), Digital Immuno Assays (DIAs) and Point of care tests (POCs)
 - RT-PCR of other respiratory viruses.
 - o Kits/versions not including target for Influenza A (H1N1pdm09).
 - Comparator other than CDC gold standard.
 - Languages other than English.

The specimen types acceptable for inclusion were nasopharyngeal aspirates, swabs, or washes; nasal aspirates, swabs, or washes; and throat swabs. For a study to be eligible, the index test and comparator needed to test the same clinical specimen. We have finally included the studies demonstrating the research question and PICOS/T strategy, published in English language providing original data on the clinical effectiveness in terms of sensitivity and specificity of real time RT-PCR based commercial kits for the diagnosis of Influenza A/H1N1pdm09 against CDC based real time RT-PCR method as a gold standard.

- 4. **Data Extraction:** A data extraction sheet was created in Microsoft Office Excel 2007 and all data pertaining to Author/Journal information, Index test/commercial kit/ kit version, reference test (comparator), patient/clinical data and clinical effectiveness data (overall & specific for H1N1) were extracted. Two reviewers independently extracted data. Disagreements were resolved by consensus or by a third reviewer. Articles that assessed several index tests against a reference standard were counted as several studies; a separate extraction form was completed for each index test. **Table 2** illustrates the characteristics of the studies used for data synthesis & analysis to demonstrate the diagnostic accuracy of real time RT-PCR based kits for the detection of Influenza A H1N1pdm09.
- 5. Data Synthesis & Analysis: For each included study, we have calculated sensitivity, specificity, along with 95% confidence intervals (CIs). All of these parameters have been studied for overall (total no. of viruses detected by the index test) and independently for Influenza A/H1N1pdm09. The pooled overall sensitivities and specificities have also been analyzed irrespective of the index test used. All analysis was carried out using Meta Disc software version 1.4.

Electronic Database	Search strategy used	Filters applied	Articles/ Citations found	Relevant findings
Pubmed	Comparison) OR Influenza) OR H1N1) AND Real time) OR RT PCR) AND CDC AND Sensitivity	Article type: Journal Article, Systematic Reviews, Meta- analysis and Evaluation studies. Text availability: Abstract Publication dates: 01.04.2009 to 21.06.2019 Species: Humans Ages: Birth to 80+ years (all age group) Sort by: Best Match	207	137
PubMed Central (PMC)	Comparison) OR Influenza) OR H1N1) AND Real time) OR RT PCR) AND CDC AND Sensitivity	Article type: Journal Article, Systematic Reviews, Meta- analysis and Evaluation studies. Publication dates: 01.04.2009 to 21.06.2019 Text availability: Abstract	754	2
Wiley Online Library	Comparison) OR Influenza) OR H1N1) AND Real time) OR RT PCR) AND CDC AND Sensitivity	Publication dates: 01.04.2009 to 21.06.2019 Text availability: Abstract	311	0
EMBASE	Comparison) OR Influenza) OR H1N1) AND Real time) OR RT PCR) AND CDC AND Sensitivity	Article type: Journal Article, Systematic Reviews, Meta- analysis and Evaluation studies. Publication dates: 01.04.2009 to 21.06.2019 Text availability: Abstract	71	1
Cochrane Database of Systematic Reviews (CDSR)	Comparison) OR Influenza) OR H1N1) AND Real time) OR RT PCR) AND CDC AND Sensitivity	Article type: Journal Article, Systematic Reviews, Meta- analysis and Evaluation studies. Publication dates: 01.04.2009 to 21.06.2019 Text availability: Abstract	2131	8
CRD-NIHR including DARE, NHS EED, INAHTA-HTA	Comparison) OR Influenza) OR H1N1) AND Real time) OR RT PCR) AND CDC AND Sensitivity	Article type: Journal Article, Systematic Reviews, Meta- analysis and Evaluation studies. Publication dates: 01.04.2009 to 21.06.2019 Text availability: Abstract	545	0
U.S. National Library of Medicine (U.S.NLM)	Comparison) OR Influenza) OR H1N1) AND Real time) OR RT PCR) AND CDC AND Sensitivity	Article type: Journal Article, Systematic Reviews, Meta- analysis and Evaluation studies. Publication dates: 01.04.2009 to 21.06.2019 Text availability: Abstract	235	0

Table 1: Search strategy protocol for the identification of studies

Author, year [ref.]	Country	Index Test, kit version, Mfd. country	No. of viruses detected, (Name), [Subtype]	Study type, (Sample type)	Age Group	Sample size	TP	FN	FP	TN
Lalle <i>et al.</i> 2011 [1]	Italy	RealStar Influenza Screen & Type RT-PCR kit 5.0 (Astra Diagnostics, Hamburg, Germany)	2, (Inf A & B), [H1N1]	Retrospective, (Nasopharyngeal swab for Inf A and sputum sample for Inf B)	Not Known	81	7	0	24	50
Pierro <i>et al.</i> 2013 [2]	Italy	Xpert® Flu assay (Cepheid, USA)	2, (Inf A & B), [H1N1]	Prospective, (Nasopharyngeal swab)	Not Known	60	18	3	2	37
Banerjee 1 <i>et al.</i> 2018 [3]	USA	GeneXpert Xpress Flu/RSV (Cepheid,USA)	3(Inf A, Inf B & RSV), [H1N1]	Retrospective, (Nasopharyngeal swabs)	2 months to 80 months (median age=7 months)	225	29	0	0	196
Banerjee 2 <i>et al.</i> 2018 [3]	USA	Hologic Panther Fusion Flu A/B/RSV (Fusion)	3(Inf A, Inf B & RSV), [H1N1]	Retrospective, (Nasopharyngeal swabs)	2 months to 80 months (median age=7 months)	225	29	0	0	196
Banerjee 3 <i>et al.</i> 2018 [3]	USA	Luminex Aries Flu A/B & RSV (Aries)	3(Inf A, Inf B & RSV), [H1N1]	Retrospective, (Nasopharyngeal swabs)	2 months to 80 months (median age=7 months)	225	28	1	0	196
Banerjee 4 <i>et al.</i> 2018 [3]	USA	Influenza A/B & RSV (Liat)	3(Inf A, Inf B & RSV), [H1N1]	Retrospective, (Nasopharyngeal swabs)	2 months to 80 months (median age=7 months)	225	29	0	0	196
Banerjee 5 <i>et al.</i> 2018 [3]	USA	Diasorin Simplexa Flu A/B & RSV (Simplexa)	3(Inf A, Inf B & RSV), [H1N1]	Retrospective, (Nasopharyngeal swabs)	2 months to 80 months (median age=7 months)	225	29	0	0	196
Banerjee 6 <i>et al.</i> 2018 [3]	USA	Biofire FilmArray Respiratory Panel (RP)	20 (adenovirus, coronavirus 229E, coronavirus HKU1, coronavirus NL63, coronavirus OC43, human metapneumovirus, influenza A, influenza A subtype H1, influenza A subtype H3, influenza A subtype 2009 H1, influenza B, parainfluenza virus 1, 2, 3, 4, rhinovirus/ enterovirus, respiratory syncytial virus, Bordetella pertussis, <i>Chlamydia pneumoniae</i> , and <i>Mycoplasma</i> <i>pneumoniae</i> .	Retrospective, (Nasopharyngeal swabs)	2 months to 80 months (median age=7 months)	225	29	0	0	196
Hang <i>et al.</i> 2018 [4]	Vietnam	Luminex xTAG Respiratory Viral Panel FAST v2	19 (Influenza A, Influenza A subtype H1, Influenza A subtype H3, Influenza A subtype 2009 H1N1, Influenza B, Respiratory Syncytial Virus, Coronavirus NL63, Coronavirus OC43, Coronavirus HKU1, Coronavirus 229E, Parainfluenza 1, 2, 3, 4, Human Metapneumovirus, Enterovirus/Rhinovirus, Adenovirus, and Human Bocavirus)	Retrospective, (Nose & Throat swab)	All Age group (median age of children was 1 year and of adults was 46 years)	442	9	0	1	432

Table 2: Characteristics of the included studies, in all studies CDC /WHO test used as gold standard

Wenzel <i>et al.</i> 2010 [5]	Germany	Roche RealTime Ready Influenza A/H1N1 detection set	1 (Influenza A Matrix gene M2), [H1N1]	Retrospective, (Nasopharyngeal swabs, Nasal wash and nasal swab)	All age group	359	112	2	7	238
Tham <i>et al.</i> 2012 [6]	Vietnam	Roche RealTime Ready Influenza A/H1N1 detection set	1 (Influenza A Matrix gene M2), [H1N1]	Retrospective, (Nose & Throat swab)	Age group 1 - 78 years (median age is 16.8 years)	210	105	14	0	91
Selvaraju 1 <i>et al.</i> 2010 [7]	USA	Prodesse ProFlu+ multiplex real time RT- PCR Assay (ProFlu+)	4 (Influenza A, Influenza B, RSVA and RSVB), [H1N1]	Retrospective, (Not Known)	children	150	30	0	0	120
Selvaraju 2 <i>et al.</i> 2010 [7]	USA	MGB Alert Influenza A/B & RSV RUO assay (MGB)	4 (Influenza A, Influenza B, RSVA and RSVB), [H1N1]	Retrospective, (Not Known)	children	150	26	4	0	120
Barbas <i>et al</i> . 2012 [8]	Argentina	Roche RealTime Ready Influenza A/H1N1 detection set	1 (Influenza A Matrix gene M2), [H1N1]	Retrospective, (Nasal or Nasopharyngeal swabs)	Not Known	136	55	17	7	57
Dayakar <i>et al.</i> 2018 [9]	India	RealStar Influenza RT- PCR kit 3.0 (Altona Diagnostics, GmbH, Germany)	2, (Inf A & B), [H1N1]	Retrospective, (Nasopharyngeal /throat swabs)	All age group	118	13	0	0	105
In House Report (Xpert Flu, Cepheid)	India	Xpert [®] Flu assay (Cepheid, France)	2, (Inf A & B), [H1N1]	Retrospective, (Throat/nasal swab)	All age group	149	28	2	0	119
In House Report (TRUPCR)	India	TRUPCR H1N1 detection (IVD) kit	1, (Inf A), [H1N1]	Retrospective, (Throat/nasal swab)	All age group	152	51	3	0	98
In House Report (Artus, Qiagen)	India	Artus Inf A./H1 LC/ RG RT-PCR kit (Qiagen, India Pvt. Ltd.)	2, (Inf A & B), [H1N1]	Retrospective, (Throat/nasal swab)	All age group	151	52	3	1	95
In House Report (Invitrogen)	India	Invitrogen, Superscript III Platinum One Step qRT-PCR kit	1, (Inf A), [H1N1]	Retrospective, (Throat/nasal swab)	All age group	150	43	0	0	107

3.3 Primary Data Collection

Primary data were collected from in-house reports (NIV data), four (n=4) kits evaluated during the financial year 2018-2019.

Validation Study: From four different companies' influenza diagnosis molecular kits [Thermo Fisher Scientific (Invitrogen); TRUPCR H1N1 kit (3BBlackBio Bhopal); Qiagen artus Infl./H1 LC/RG RT-PCR Kit; and Cepheid Xpert® Flu kit] were evalauetd and compared with CDC/WHO gold standard kit.

Primary Costing Study

The bottom-up approach of costing was used, to include prices of various components like consumables, instruments, infrastructure, overheads, Human resource information etc. were collected. For each of the facilities, annualization of capital costs was done. Annual factor was calculated using a discount factor of 3% and the life of the item. A maintenance rate of 10% was applied. Apportioning of joint/shared costs (Personnel, space or equipment that are being used for more than one activity) was calculated. Space cost was calculated by multiplying the estimates of furnished floor size of the facility with the local commercial rental price of the similar space. The total cost of the recurrent resources (consumables) was calculated by multiplying the unit price with the quantity of respective resource consumed. The resources (both capital and recurrent) which were shared in nature and were used in multiple activities were apportioned towards each of the respective activity using appropriate apportioning statistics. Staff members (scientist, technical assistant, technician and multitasking staff) which were jointly involved in a number of activities, proportional time spent in sample processing and testing activities by the staff member was used as an apportioning statistic for allocating their salaries towards these particular activities. Salary for technical assistant, technician and multitasking staff was used for calculation as contractual consolidated salary as per ICMR guidelines.

4. Results

4.1 Results of Systematic Literature Review and Meta-analysis:

1. Electronic database Search Results: A sum total of 4258 records identified through different electronic database searching and 4112 of which were screened after duplicates removal. After applying pre-specified inclusion/exclusion criteria, 3960 articles were found inappropriate and hence excluded after titles and abstracts screening. Rest of the articles (n=152) were selected for full text read and 133 of which were further screened and excluded as not found fit for further inclusions. Nineteen (n=19) studies were finally selected for data extraction and six (n=6) out of which were excluded due to inappropriate/insufficient data provided. We finally included 13 articles (8 Pubmed + 1 EmBase + 4 In-house evaluation reports/Unpublished data) in our meta-analysis of accuracy estimates (**Fig 1**).

2. Data Extraction: Thirteen (n=13) articles were finally selected for data extraction which includes: [Author/Journal information (title, authors, journal, publication year, country)], [Index test/commercial kit (name of kit, manufacturing company/country, kit version, no. of viruses/subtypes tested, time taken)], [Reference test (CDC)], [Patient/clinical data (sample size, age group, PID, sample type, retrospective/prospective study, time of sample collection etc.)], [Clinical effectiveness data (True positive, True negative, False positive, False negatives)] [**Table 2**]. All of the above mentioned data were extracted from included articles and maintained in Microsoft Office Excel 2007. Data extraction was done independently by two reviewers and the disagreements were resolved by consensus. Two of the included articles (Banerjee *et al.*, 2018 & Selvaraju *et al.*, 2010) was found to assess several index tests against a reference standard and were counted as several studies and quoted as Banerjee 1, 2, 3.......6 & Selvaraju 1, 2 in this study.

3. Data Synthesis and analysis: All the raw data from included studies were extracted. Further analysis was done using True positives (TP), False negatives (FN), False positives (FP) and True negatives (TN). The overall accuracy of the index test demonstrates the total number and subtypes of viruses detected. Individual accuracy defines specifically for H1N1pdm09. Diagnostic accuracy of overall kit: Here we have considered the diagnostic accuracy of the overall kit including different subtypes of the influenza virus. The sensitivity of different kits varied from 46% to 100% whereas the specificity of different kits varied from 87% to 100% among the studies included in the review. Even for the same kit, there was huge variation between different studies both for sensitivity and specificity. (Table 3)

Diagnostic accuracy of H1N1: Here we have considered the diagnostic accuracy of the kit only for H1N1. The sensitivity of different kits varied from 76% to 100% whereas the specificity of different kits varied from 67% to 100% among the studies included in the review. Even for the same kit, there was huge variation between different studies both for sensitivity and specificity (Table 4).

Studywise diagnistic results (**Table 3**) and forest plot (**Figure 2**) showed statistically significant heterogeneity. Hence use of pooled estimates will not be appropriate. For H1N1 virus [**Table 4 & Figure 3**] similar results were noted. Therefore, we have used inhouse kit evaluation estimates for comparision purpose and intrepretation of the results.

Study (Kit name)	Sensitivity	[95% Confide	ence Interval]	Specificity	[95% Conf	idence Interval]
Lalle 2011 (Realstar)	0.461	0.345	0.579	1.000	0.478	1.000
Dayakar 2018 (Realstar)	1.000	0.941	1.000	1.000	0.937	1.000
Wenzel 2010 (Roche)	0.984	0.955	0.997	0.870	0.810	0.917
Tham 2012 (Roche)	0.858	0.796	0.907	0.976	0.871	0.999
Barbas 2012 (Roche)	0.745	0.649	0.826	0.971	0.847	0.999
Pierro 2013 (Xpert)	0.656	0.468	0.814	0.929	0.765	0.991
Banerjee 2018 (Xpert)	0.983	0.951	0.996	0.938	0.828	0.987
NIV Unpublished (Xpert Flu)	1.000	0.884	1.000	0.992	0.954	1.000
Banerjee 2018 (Hologic)	0.989	0.960	0.999	1.000	0.926	1.000
Banerjee 2018 (Aries)	0.960	0.920	0.984	0.979	0.889	0.999
Banerjee 2018 (Cobas)	0.989	0.960	0.999	0.917	0.800	0.977
Banerjee 2018 (Simplexa)	0.915	0.864	0.952	0.958	0.857	0.995
Banerjee 2018 (FilmArray)	0.972	0.935	0.991	0.917	0.800	0.977
Hang 2018 (xTAG)	0.918	0.881	0.947	0.982	0.979	0.985
Selvaraju 2010 (ProFlu+)	0.983	0.940	0.998	1.000	0.894	1.000
Selvaraju 2010 (MGB*)	0.940	0.881	0.976	1.000	0.894	1.000
NIV Unpublished (TruPCR)	1.000	0.951	1.000	0.949	0.874	0.986
NIV Unpublished (Artus)	0.848	0.758	0.914	0.966	0.883	0.996
NIV Unpublished (Invitrogen)	1.000	0.918	1.000	1.000	0.966	1.000
Pooled	0.924	0.913	0.935	0.978	0.975	0.982
Heterogeneity chi-squared = 287.76 (d.f.= 18) p < 0.001 Inconsistency (I-square) = 93.7 %				Heterogeneity 0.001	chi-squared = 8	31.27 (d.f.= 18) p <
No. studies = 19 .				Inconsistency (No. studies = 1	· • ·	9 %

 Table 3: Diagnostic accuracy of overall kit

*Not detecting H1 target

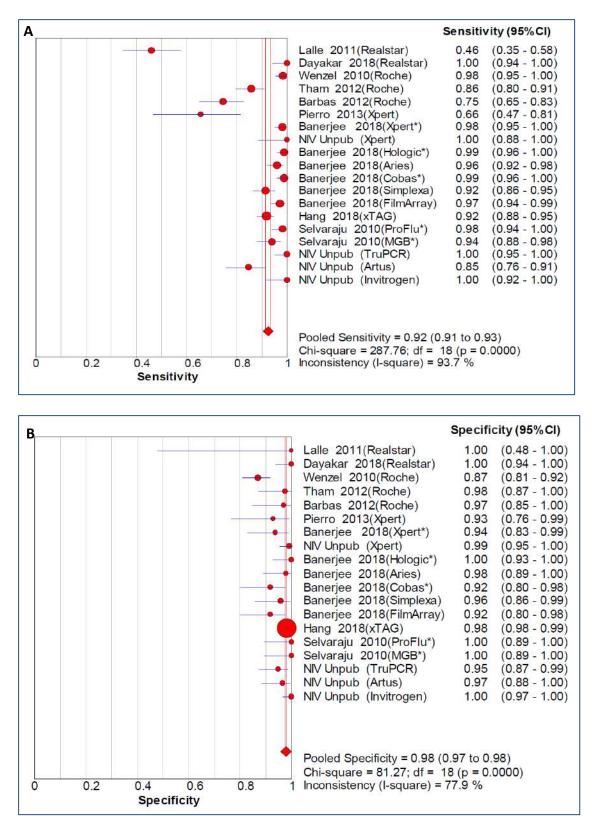
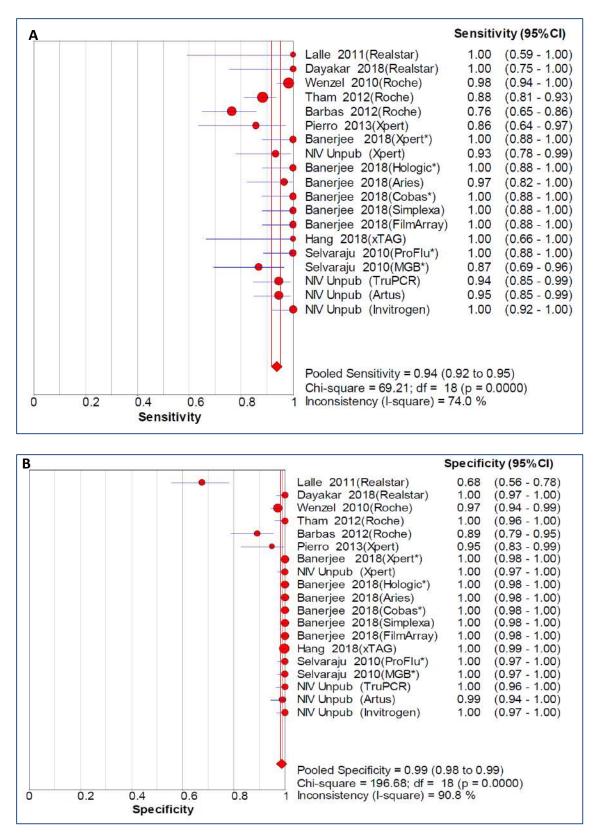



Figure 2: Forest plot for sensitivity (A) and specificity (B) of each individual study for overall kit, the pooled estimate are represented by diamond and the horizontal lines represent 95% confidence intervals (CI).

Table 4: Diagnostic accuracy of H1N1

Study (Kit name)	Sensitivity	[95% Confide	ence Interval]	Specificity	[95% Conf	idence Interval]
Lalle 2011 (Realstar)	1.000	0.590	1.000	0.676	0.557	0.780
Dayakar 2018 (Realstar)	1.000	0.753	1.000	1.000	0.965	1.000
Wenzel 2010 (Roche)	0.982	0.938	0.998	0.971	0.942	0.988
Tham 2012 (Roche)	0.882	0.810	0.934	1.000	0.960	1.000
Barbas 2012 (Roche)	0.764	0.649	0.856	0.891	0.788	0.955
Pierro 2013 (Xpert)	0.857	0.637	0.970	0.949	0.827	0.994
Banerjee 2018 (Xpert)	1.000	0.881	1.000	1.000	0.981	1.000
NIV Unpublished (Xpert)	0.933	0.779	0.992	1.000	0.969	1.000
Banerjee 2018 (Hologic)	1.000	0.881	1.000	1.000	0.981	1.000
Banerjee 2018 (Aries)	0.966	0.822	0.999	1.000	0.981	1.000
Banerjee 2018 (Cobas)	1.000	0.881	1.000	1.000	0.981	1.000
Banerjee 2018 (Simplexa)	1.000	0.881	1.000	1.000	0.981	1.000
Banerjee 2018 (FilmArray)	1.000	0.881	1.000	1.000	0.981	1.000
Hang 2018 (xTAG)	1.000	0.664	1.000	0.998	0.987	1.000
Selvaraju 2010 (ProFlu+)	1.000	0.884	1.000	1.000	0.970	1.000
Selvaraju 2010 (MGB*)	0.867	0.693	0.962	1.000	0.970	1.000
NIV Unpublished (TruPCR)	0.944	0.846	0.988	1.000	0.963	1.000
NIV Unpublished (Artus)	0.945	0.849	0.989	0.990	0.943	1.000
NIV Unpublished (Invitrogen)	1.000	0.918	1.000	1.000	0.966	1.000
Pooled	0.936	0.917	0.953	0.985	0.980	0.989

*Not detecting H1 target

Figure 3: Forest plot for sensitivity (A) and specificity (B) of each individual study for H1N1, the pooled estimate are represented by diamond and the horizontal lines represent 95% confidence intervals (CI).

Primary data Collection

4.2 Validation Study:

On the other hand, data were also collected from in-house reports (NIV data), four (n=4) kits were evaluated during the financial year 2018-2019.

Thermo Fisher Scientific (Invitrogen Pandemic H1N1/09 Assay kit)

Pandemic H1N1/09 Assay Set v3.0 contains components that are Influenza A Assay, Pandemic Influenza A assay, Pandemic H1 Assay and RNase P control Assay. Sensitivity and specificity for Influenza A target of A(H1N1)pdm09 virus was 100% (95% CI: 91.8, 100) and 100% (95% CI: 96.53, 100) respectively. Sensitivity and specificity for Influenza Hemagglutinin H1 target of A/H1N1pdm09 virus was 100% (95% CI: 91.8, 100) and 100% (95% CI: 96.53, 100) respectively. Sensitivity for Influenza A target of A (H3N2) virus was 100% (95% CI: 85.69, 100) and 100% (95% CI: 97.06, 100) respectively. It takes around 4 hours (which includes sample processing, RNA extraction, real time RT-PCR and result analysis) to complete the test run and 29 samples can be run in one round.

TRUPCR H1N1 kit (3BBlackBio Bhopal)

TRUPCR[®] H1N1 detection real time RT-PCR kit developed for the detection of Influenza A(H1N1)pdm09 virus in clinical samples. Kit contains master mix, enzyme mix, primer probe mix and positive controls. Kit detects internal control of human source RNaseP, universal Influenza A target, Pandemic (2009) Influenza A target & H1 (hemagglutinin) target of Influenza A(H1N1)pdm09 virus. Sensitivity and specificity for Influenza A target was 100% (95% CI: 95.06, 100) and 94.87% (95% CI: 87.54, 97.99) respectively. Sensitivity and specificity for Influenza H1 target of A(H1N1)pdm09 virus was 94.44% (95% CI: 84.89, 98.09) and 100% (95% CI: 96.23, 100) respectively.

Qiagen artus Infl./H1 LC/RG RT-PCR Kit. For research use only, not for use in diagnostic procedures. The artus Infl./H1 LC/RG RT-PCR Kit constitutes two ready-to-use systems for the detection of influenza A and B viral RNA and novel influenza A (H1N1) viral RNA (2009 H1N1 virus) using reverse transcription–polymerase chain reaction (RT-PCR) on Rotor-Gene Q or LightCycler instruments. The Influenza master contains reagents and enzymes for the specific amplification of influenza virus A genome and influenza virus B genome. **It does not differentiate between Influenza A and B type**. The Influenza H1 master contains reagents

and enzymes for the specific amplification of influenza virus H1 (2009 H1N1 virus) genome. Sensitivity and specificity for Influenza target was 84.78% (95% CI: 76.06, 90.71) and 96.61% (95% CI: 88.46, 99.07) respectively. Sensitivity and specificity for Influenza H1 target of A(H1N1)pdm09 virus was 94.55% (95% CI: 85.15, 98.13) and 98.96% (95% CI: 94.33, 99.82) respectively. It takes around 4 hours (which includes sample processing, RNA extraction, real time RT-PCR and result analysis) to complete the test run and 34 or 46 samples can be run in one round depending upon rotor used.

Cepheid Xpert[®] Flu kit

The Xpert[®] Flu Assay is an automated in vitro diagnostic test for the qualitative detection and differentiation of influenza A, influenza B, and influenza A subtype H1N1pdm09 directly from nasal aspirates/washes (NA/W) and nasopharyngeal (NP) swab specimens of patients. The assay is performed on Cepheid GeneXpert Instrument Systems. The GeneXpert Instrument Systems automate and integrate sample processing/lysis, purification, nucleic acid amplification, and detection of the viral target in samples using reverse transcriptase real-time PCR assays. Single-use disposable Xpert Flu Assay cartridges that hold the RT-PCR and PCR reagents and perform the detection PCR processes. A Sample Processing Control (SPC) and a Probe Check Control (PCC) are also included in the cartridge. Sensitivity and specificity for FluA target of A(H1N1)09pdm virus tested was 100% (95% CIs: 88.65, 100) and 99% (95% CIs: 95.39, 99.85) respectively. Sensitivity and specificity for influenza hemagglutinin H1 target of A/H1N1pdm09 virus tested was 93.33% (95% CIs: 78.68, 98.15) and 100% (95% CIs: 96.87, 100) respectively. Sensitivity and specificity for Influenza B virus was 96.67% (95% CIs: 83.33, 99.41) and 100% (95% CIs: 96.87, 100) respectively. Sensitivity and specificity for Flu A target of A (H3N2) virus tested was 63% (95% CIs: 38.64, 81.52) and 100% (95% CIs: 97.19, 100) respectively. It takes around 2 hours to complete the test run, 5 minutes of hands on time for sample processing and 1 to 4 samples can be run in one round depending upon the machine module.

The pooled values of sensitivities and specificities established that RT-PCR based diagnosis of H1N1 can be regarded as the gold standard. Among all the four diagnostic kits tested, Invitrogen kit was shown to possess maximum (100%) sensitivity and specificity values followed by Artus (Qiagen) with 94.5% sensitivity and 99% specificity. However, TRUPCR kit was 94.4% sensitive with a specificity of 100%. Sensitivity was least recorded in Xpert (93.3%) while the specificity remains 100%. As per the NIV data reports, we concluded that

Invitrogen is the kit with maximum diagnostic effectiveness (100%) and Xpert Flu with least clinical effectiveness (93.3%). TRUPCR is the indigenous kit (made in Bhopal, India) and reported almost similar sensitivity & specificity in contrast to other imported kits.

4.3 Primary costing study

For costing of kits, we included prices of various components like consumables, instruments, infrastructure, overheads, Human resource information etc. were collected. All the cost and expenditure estimates in the present study were calculated in Indian National Rupees (INR) for the year 2019 (**Table 5**).

S. No.	Cost Heads for data collection	Invitrogen kit cost/ sample	Qiagen kit cost/ sample	TruPCR kit cost/ sample	Cepheid kit cost/ sample
1	Human Resources	138.84	138.84	138.84	127.59
2	Medical Equipments	99.31	85.02	99.31	112.79
3	Reagents (Medical Consumables)	1675.07	1575.99	1320.1	4060.75
4	Physical Infrastructure	64.35	64.35	64.35	28.35
5	Utilities &Overheads (Water/Electricity/Laundry/ Maintenance etc.)	37.48	37.48	37.48	12.85
6	Total	2015.05	1901.69	1660.08	4342.33

Table 5: Costing of different kits/sample testing

4.4. Final Results:

Literature Review: Diagnostic accuracy of the kits for detection of H1N1 showed huge variation. The sensitivity of different kits varied from 76% to 100% whereas the specificity of different kits varied from 67% to 100% among the studies included in the review. Even for the same kit, there was huge variation between different studies both for sensitivity and specificity. (Table 4)

Validation Study: Invitrogen kit exhibited the highest sensitivity and specificity for detection of H1N1 among 4 kits evaluated in validation study.

Costing Study: Cephied kit was most expnsive with cost/test of Rs.4342, whereas TRUPCR was least expensive with cost/test of Rs. 1660.

Operational Feasibility: Integrated Disease Surveillance Programme (IDSP) assisted lab network of 12 Laboratories are providing laboratory support in terms of testing, providing viral transport medium and diagnostic reagents. The laboratory network of ICMR-VRDL (30 labs) has also been activated to test for H1N1 cases. All these labs are currently using real time RT-PCR test for diagnosis of influenza H1N1 using Invitrogen kit. The present study reconfirms that Invitrogen kit is most cost effective kit for diagnosis of influenza H1N1 with an incremental cost of 355 Rs/test. As the kit uses an open system, it could be used in any real time PCR platform. Already being used in the system, the staff is trained in using the kit also. Therefore, there will be no addional burden in terms of procuring new platforms, or training of staff and cost of kits.

Cost Effectiveness:

- Influenza is an acute event and disease may range from mild symptomts to severe complications depending upon the age and other co-morbidities of the patients. Influenza testing is not needed for all outpatients with signs and symptoms of influenza to make antiviral treatment decisions. If treatment is clinically indicated, antiviral treatment is not withheld from outpatients or hospitalized patients with suspected influenza while awaiting influenza testing results. However, the diagnostic information is valuable for many other reasons. It does have a value of reassurance for the patients and the families and also help them seeking proper care and in taking due cautions.
- If only H1N1 detection (not considering H3N2 and Influenza B) is considered for deciding the cost effectiveness, TRUPCR kit dominated over Qiagen and Cephied kit with least cost (1660 Rs/test) and highest accuracy (sensitivity 94%, specificity 100%)

among these three kits, and thus Qiagen and Cephied were excluded from costeffectiveness analysis. While comparing the TRUPCR kit and Invitrogen kit, later shows higher accuaray with an incremental cost of 355 Rs/test.

• If accuracy of overall kit is considered including Influenza A and Influenza B, Cephied kit can detect both subtypes in single reaction including the subtypes also. In addition to detecting both subtypes, the Cephied kit can provide results in least of the time. The kit is highly automated and thus easiest to be performed among the four kits. But at the same time, this kit works in a closed system model, that means the kit works only in a given platform and only 1-4 samples can be tested in one go, depending upon the machine module being used.

Target*		Invitrogen Kit	Qiagen kit	TruPCR kit	Cepheid kit
Cost (Rs) Pe	er Sample	2015	1902	1660	4342
Ease	of doing	Easy	Easy	Easy	Easiest
Turn around	time	4 hours	4 hours	4 hours	2 hours
Samples in one go		29 Samples	34 or 46 samples, depending upon the rotor used.	29 Samples	1 to 4 samples, depending upon the machine module.
Operational	Operational Feasibility		Open system Can be used in existing facilities.	Open system Can be used in existing facilities.	Closed system Health system will need to buy new RT-PCR machines, if this kit is introduced.
Influenza A	Sensitivity (95%CI)	100 (91-100)	84 (76-90)	100 (95-100)	100 (88-100)
	Specificity (95%CI)	100 (96-100)	96 (88-99)	94 (87-97)	99 (95-99)
H1N1	Sensitivity (95%CI)	100 (91-100)	94 (85-98)	94 (84-98)	93 (78-93)
	Specificity (95%CI)	100 (96-100)	98 (94-99)	100 (96-100)	100 (96-100)

Table 6: Summary Table

H3N2	Sensitivity (95%CI)	100 (85-100)		63 (38-81)
	())/0CI)	(05-100)		(30-01)
	Specificity	100		100
	(95%CI)	(97-100)		(97-100)
В	Sensitivity			96
	(95%CI)			(83-99)
	Specificity			100
	(95%CI)			(96-100)

*In-house evaluated kit (Unpublished NIV data as reported in Table 2)

4.5 Study Recommendations:

1. In view of highest diagnostic accuracy (100% sensitivity and 100% specificity) among all the kits evaluated in this study, CDC/WHO real time RT-PCR kit (Invitrogen) is recommended for diagnosis of Category C patients for influenza A/H1N1pdm09 virus from clinical samples with an incremental cost of 355 Rs/test.

2. Diagnostics of H1N1in India, is currently being provided by ICMR-VRDL and NCDC network and all these centres are using real time PCR based technique with Invitrogen kits. The present study reconfirms the fact CDC/WHO real time RT-PCR kit (Invitrogen) is most cost effective kit for H1N1 diagnostics with no additional burden to the healthcare system.

5. Strengths of the study:

- First comprehensive HTA study on realtime PCR kits for H1N1 diagnosis.
- Supported by systematic review.
- Supported by primary study done specifically for this HTA analysis to estimate the diagnostic accuracy of the kits by an in house validation study.
- Supported by primary study done specifically for this HTA analysis to estimate the cost of resources utilized, medical and non-medical cost for H1N1 testing.
- This study also considered highly valuable suggestions and key points that emerged after intensive stakeholder's consultation.

Limitations of the study:

• More kits needs to be evaluated from different companies. Three companies have already approached to NIV for their evaluation. These kits can also be considered in future.

Acknowledgement:

This project was funded by DHR (T.11011/02/2017-HR). Dr. Naveen Minhas worked as research associate in this project. We thank Mr. Santosh Jadhav for statistical analysis and Dr. YK Gurav for critical review of this report. Dr. Aksahy Singh Chauhan and Dr. Malkeet Singh provided technical support. We thank Dr. Nishant Jaiswal, Postgraduate Institute of Medical Education and Research, Chandigarh, for providing us EMBASE search results.

References:

- 1. Lim FJ, de Klerk N, Blyth CC, Fathima P, Moore HC. Systematic review and metaanalysis of respiratory viral coinfections in children. Respirology 2016;21:648-55.
- 2. Stöhr, K. Influenza—WHO cares. Lancet Infect. Dis. 2, 517 (2002).
- 3. Koul PA, Broor S, Saha S, Barnes J, Smith C, Shaw M, Chadha M, Lal RB. Differences in influenza seasonality by latitude, northern India.Emerg Infect Dis. 2014 Oct;20(10):1723-6.
- 4. Chadha MS, Potdar VA, Saha S, Koul PA, Broor S, Dar L, Chawla-Sarkar M, Biswas D, Gunasekaran P, Abraham AM, Shrikhande S, Jain A, Anukumar B, Lal RB, Mishra AC. Dynamics of influenza seasonality at sub-regional levels in India and implications for vaccination timing. PLoS One. 2015 May 4;10(5):e0124122.
- Nair H, Simões EA, Rudan I, Gessner BD et al; Severe Acute Lower Respiratory Infections Working Group. Global and regional burden of hospital admissions for severe acute lower respiratory infections in young children in 2010: a systematic analysis. Lancet. 2013 Apr 20;381(9875):1380-90.
- 6. Lafond KE, Nair H, Rasooly MH, Valente F, Booy R et al; Global Respiratory Hospitalizations—Influenza Proportion Positive (GRIPP) Working Group. Global Role and Burden of Influenza in Pediatric Respiratory Hospitalizations, 1982-2012: A Systematic Analysis. PLoS Med. 2016 Mar 24;13(3):e1001977.
- 7. Mishra AC, Chadha MS, Choudhary ML, Potdar VA. Pandemic influenza (H1N1) 2009 is associated with severe disease in India. PLoS One. 2010 May 7;5(5):e10540.
- Broor S, Krishnan A, Roy DS, Dhakad S, Kaushik S, Mir MA, Singh Y, Moen A, Chadha M, Mishra AC, Lal RB. Dynamic patterns of circulating seasonal and pandemic A(H1N1)pdm09 influenza viruses from 2007-2010 in and around Delhi, India.PLoS One. 2012;7(1):e29129.
- Koul P, Khan U, Bhat K, Saha S, Broor S, Lal R, Chadha M. Recrudescent Wave of A/H1N1pdm09 Influenza Viruses in Winter 2012-2013 in Kashmir, India. PLoS Curr. 2013 Sep 26;5.
- Broor S, Sullender W, Fowler K, Gupta V, Widdowson MA, Krishnan A, Lal RB. Demographic shift of influenza A(H1N1)pdm09 during and after pandemic, rural India. Emerg Infect Dis. 2012 Sep;18(9):1472-5.
- 11. Chadha MS, Hirve S, Dawood FS, Lele P, Deoshatwar A, Sambhudas S, Juvekar S, LaFond KE, Mott JA, Lal RB, Mishra AC. Burden of seasonal and pandemic influenzaassociated hospitalization during and after 2009 A(H1N1)pdm09 pandemic in a rural community in India. PLoS One. 2013 May 15;8(5):e55918.
- Hirve S, Krishnan A, Dawood FS, Lele P, Saha S, Rai S, Gupta V, Lafond KE, Juvekar S, Potdar V, Broor S, Lal RB, Chadha M. Incidence of influenza-associated hospitalization in rural communities in western and northern India, 2010-2012: a multi-site population-based study. J Infect. 2015 Feb;70(2):160-70.
- Lalle, E., Bordi, L., Meschi, S., Selleri, M., Valli, M. B., Patella, E., & Capobianchi, M. R. (2011). Comparison of two real-time RT PCR-based systems for the detection and typing of the pandemic influenza A virus, 2009. *Journal of Virological Methods*, 177(2), 193–196. https://doi.org/10.1016/j.jviromet.2011.07.004.
- Pierro, A., Gaibani, P., Rossini, G., Landini, M. P., & Sambri, V. (2013). Clinical application of a molecular method based on Real Time RT-PCR for detection of influenza A(H1N1)v virus. *New Microbiologica*, 36(4), 405–408.
- 15. Banerjee, D., Kanwar, N., Hassan, F., Essmyer, C., & Selvarangan, R. (2018). Comparison of six sample-to-answer influenza A/B and respiratory syncytial virus

nucleic acid amplification assays using respiratory specimens from children. *Journal of Clinical Microbiology*, 56(11). https://doi.org/10.1128/JCM.00930-18

- 16. Thi Ty Hang, V., Thi Han Ny, N., My Phuc, T., Thi Thanh Tam, P., Thao Huong, D., Dang Trung Nghia, H., ... Wolfe, N. (2017). Evaluation of the Luminex xTAG Respiratory Viral Panel FAST v2 assay for detection of multiple respiratory viral pathogens in nasal and throat swabs in Vietnam [version 1; referees: 2 approved]. *Wellcome Open Research*, 2, 1–11. https://doi.org/10.12688/wellcomeopenres.12429.1
- Wenzel, J. J., Panning, M., Kaul, K. L., Mangold, K. A., Revell, P. A., Luna, R. A., ... Reischl, U. (2010). Analytical performance determination and clinical validation of the novel Roche realtime ready influenza A/H1N1 detection set. *Journal of Clinical Microbiology*, 48(9), 3088–3094. https://doi.org/10.1128/JCM.00785-10
- 18. Tham, N. T., Hang, V. T. T., Khanh, T. H., Viet, D. C., Hien, T. T., Farrar, J., ... van Doorn, H. R. (2012). Comparison of the Roche RealTime ready Influenza A/H1N1 Detection Set with CDC A/H1N1pdm09 RT-PCR on samples from three hospitals in Ho Chi Minh City, Vietnam. *Diagnostic Microbiology and Infectious Disease*, 74(2), 131–136. https://doi.org/10.1016/j.diagmicrobio.2012.06.003
- Selvaraju, S. B., & Selvarangan, R. (2010). Evaluation of three influenza A and B realtime reverse transcription-PCR assays and a new 2009 H1N1 assay for detection of influenza viruses. *Journal of Clinical Microbiology*, 48(11), 3870–3875. https://doi.org/10.1128/JCM.02464-09
- 20. Barbás, M. G., Gallego, S. V., Castro, G. M., Kademian, S., de Leon, J., Cudolá, A., & Baumeister, E. (2012). Performance of a commercial assay for the diagnosis of influenza A (H1N1) infection in comparison to the centers for disease control and prevention protocol of real time RT-PCR. *Revista Argentina de Microbiologia*, 44(1), 26–29. https://doi.org/10.1590/S0325-75412012000100006
- 21. Dayakar, S., Pillai, H. R., Thulasi, V. P., Jayalekshmi, D., & Nair, R. R. (2018). Comparative Study of Molecular Approaches for the Detection of Influenza Virus from Patient Samples Using Real-time PCR: Prospective Disease Burden Study in Kerala (India) from 2010 to 2016. *Current Infectious Disease Reports*, 20(8). https://doi.org/10.1007/s11908-018-0632-y
- 22. Guidelines on categorization of Seasonal Influenza cases during screening for home isolation, testing, treatment and hospitalization (25.02.2019) https://ncdc.gov.in/showfile.php?lid=361

Annexures 1: Pandemic H1N1/09 Assay kit- Invitrogen

Pricentityed life (yrs) of Equip mentRate (yrs) of Equip mentCapitalLaminar Air Flow50000 01100.03Benchtop centrifuge with rotor for 2 ml reaction tubes25000 02100.037500Fast instrument (Applied Biosystems) with Laptop & accessories1100.03Vertical200001100.03	Factor 0.117230 507 0.117230 507 0.117230 507 0.117230 507	ent Unit Annua Cost Capita 58615 .2533 58615 .2533 21101 4.911 9	l Maint enanc e Cost 5000 5000 18000	nt Worth value of Maint enanc e 3720. 46957 4 3720. 46957 4 13393 .6904 7	Cost 62335 .7228 8 62335 .7228 8 22440 8.602 4	tioned Cost/ sampl e 12.98 66089 3 12.98 66089 3 46.75 17921 6	
CapitalLaminar Air Flow50000 01100.03Benchtop centrifuge ment25000 02100.03Benchtop centrifuge for 2 ml reaction tubes25000 12100.037500Fast n tubes18000 11100.037500Fast instrument (Applied Biosystems) with Laptop & accessories1100.03	507 0.117230 507 0.117230	Annua Cost Capita 58615 .2533 58615 .2533 2533 21101 4.911	enanc e Cost 5000 5000	value of Maint enanc e 3720. 46957 4 3720. 46957 4 13393 .6904	.7228 8 62335 .7228 8 22440 8.602	sampl e 12.98 66089 3 12.98 66089 3 3 46.75 17921	
CapitalLaminar Air Flow50000 01100.03Benchtop centrifuge with rotor for 2 ml reaction tubes25000 22100.037500Fast instrument (Applied Biosystems) with Laptop & accessories1100.03	507 0.117230 507 0.117230	Cost Capita 58615 .2533 58615 .2533 2533 21101 4.911	e Cost 5000 5000	of Maint enanc e 3720. 46957 4 3720. 46957 4 13393 .6904	.7228 8 62335 .7228 8 22440 8.602	e 12.98 66089 3 12.98 66089 3 3 46.75 17921	
CapitalLaminar Air Flow50000 01100.03Benchtop centrifuge25000 02100.03mith rotor for 2 ml reaction tubes02100.037500Fast instrument (Applied Biosystems) with Laptop & accessories1100.03	507 0.117230 507 0.117230	Capita 58615 .2533 58615 .2533 21101 4.911	5000	Maint enanc e 3720. 46957 4 3720. 46957 4 13393 .6904	.7228 8 62335 .7228 8 22440 8.602	12.98 66089 3 12.98 66089 3 46.75 17921	
Flow0Image: second secon	507 0.117230 507 0.117230	 58615 .2533 58615 .2533 2533 21101 4.911	5000	enanc e 3720. 46957 4 3720. 46957 4 13393 .6904	.7228 8 62335 .7228 8 22440 8.602	66089 3 12.98 66089 3 46.75 17921	
Flow0Image: second secon	507 0.117230 507 0.117230	58615 .2533 58615 .2533 .2533 21101 4.911	5000	e 3720. 46957 4 3720. 46957 4 13393 .6904	.7228 8 62335 .7228 8 22440 8.602	66089 3 12.98 66089 3 46.75 17921	
Flow0100.03Benchtop centrifuge for 2 ml reaction tubes25000 02100.037500Fast 1800018000 11100.03DxReal instrument (Applied Biosystems) with Laptop & accessories1100.03	507 0.117230 507 0.117230	.2533 58615 .2533 21101 4.911	5000	3720. 46957 4 3720. 46957 4 13393 .6904	.7228 8 62335 .7228 8 22440 8.602	66089 3 12.98 66089 3 46.75 17921	
Flow0100.03Benchtop centrifuge for 2 ml reaction tubes25000 02100.037500Fast 1800018000 11100.03DxReal instrument (Applied Biosystems) with Laptop & accessories1100.03	507 0.117230 507 0.117230	.2533 58615 .2533 21101 4.911	5000	46957 4 3720. 46957 4 13393 .6904	.7228 8 62335 .7228 8 22440 8.602	66089 3 12.98 66089 3 46.75 17921	
Benchtop centrifuge for 2 ml reaction tubes25000 22100.037500 base reaction tubes7500 reaction tubes1100.0300 time instrument (Applied Biosystems) with Laptop & accessories1100.03	0.117230 507 0.117230	58615 .2533 21101 4.911		4 3720. 46957 4 13393 .6904	8 62335 .7228 8 22440 8.602	3 12.98 66089 3 46.75 17921	
centrifuge0with rotor0for 2 ml1reaction1tubes17500 Fast18000DxReal0000timePCRinstrument(AppliedBiosystems)with Laptop&accessories	507	.2533 21101 4.911		3720. 46957 4 13393 .6904	62335 .7228 8 22440 8.602	12.98 66089 3 46.75 17921	
centrifuge 0 with rotor 0 for 2 ml 1 reaction 1 tubes 1 7500 Fast 18000 Dx Real 00 time PCR 1 instrument (Applied Biosystems) with Laptop & accessories	507	.2533 21101 4.911		46957 4 13393 .6904	.7228 8 22440 8.602	66089 3 46.75 17921	
with rotor for 2 ml reaction tubes 7500 Fast 18000 1 10 0.03 Dx Real 00 time PCR instrument (Applied Biosystems) with Laptop & accessories	0.117230	21101 4.911	18000	4 13393 .6904	8 22440 8.602	3 46.75 17921	
for 2 ml reaction tubesImage: second se		4.911	18000	13393 .6904	22440 8.602	46.75 17921	
reaction tubes 7500 Fast 18000 1 10 0.03 Dx Real 00 time PCR instrument (Applied Biosystems) with Laptop & accessories I I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		4.911	18000	.6904	8.602	17921	
tubesImage: constraint of the second sec		4.911	18000	.6904	8.602	17921	
7500Fast180001100.03DxReal001100.03timePCR1101010instrument(Applied101010Biosystems)with Laptop41010&accessories101010		4.911	18000	.6904	8.602	17921	
DxReal00timePCRinstrument(AppliedBiosystems)with Laptop&accessories		4.911	18000	.6904	8.602	17921	
time PCR instrument (Applied Biosystems) with Laptop & accessories	507						
instrument (Applied Biosystems) with Laptop & accessories		9		7	4	6	
(Applied Biosystems) with Laptop & accessories							
Biosystems) with Laptop & accessories							1
Biosystems) with Laptop & accessories							
with Laptop & accessories			1		1		
& accessories							
accessories	1						
	0.117230	23446	2000	1488.	24934	5.194	
Autoclave 0	507	.1013	2000	18783	.2891	64357	
	507	2		10/05	5	3	
Vortex 20000 2 10 0.03	0.117230	4689.	400	297.6	4986.	1.038	
mixer	507	22026		37566	85783	92871	
		4				5	
Mini Plate 50000 1 10 0.03	0.117230	5861.	500	372.0	6233.	1.298	
spinner	507	52533		46957	57228	66089	
				4	8	3	
Mini Spin 20000 1 10 0.03	0.117230	2344.	200	148.8	2493.	0.519	
	507	61013		18783	42891	46435	
		2			5	7	
-20 10000 1 10 0.03	0.117230	11723	1000	744.0	12467	2.597	
(freezer) 0	507	.0506		93914	.1445	32178	
		6		9	8	7	
Refrigerator 30000 1 10 0.03	0.117230	3516.	300	223.2	3740.	0.779	
	507	91519		28174	14337	19653	
		8		5	3	6	
Computer 40000 1 10 0.03	0.117230	4689.	400	297.6	4986.	1.038	
system	507	22026		37566	85783	92871	
		4				5	
UPS 10000 1 10 0.03	0.117230	11723	1000	744.0	12467	2.597	l
0	507	.0506		93914	.1445	32178	
		6		9	8	7	
Air 40000 4 10 0.03	0.117230	18756	1600	1190.	19947	4.155	
conditioner	507	.8810		55026	.4313	71485	
(AC)		6		4	2	8	

	Printer cum	15000	1	E	0.03	0.218354	3275.	300	258.7	3534.	0.736	
	scanner	15000	T	5	0.03	0.218354 571	3275. 31857	300	258.7 82635	3534. 10120	27108	
	scanner					571	1		3	6	5	
	Pipettes:						T		3	0	5	
	(Genaxy)											
	2-20ul	15000	3	5	0.03	0.218354	9825.	900	776.3	10602	2.208	
	(NPX-20)	13000	5	5	0.05	0.218554 571	9625. 95571	900	47905	.3036	81325	
	(1187-20)					571	3		47905 9	2	4	
	20-200ul	15000	3	5	0.02	0.218354	9825.	900	776.3	10602	2.208	
	(NPX-200)	15000	3	5	0.03	0.218354 571	9825. 95571	900	47905	.3036	81325	
	(1197-200)					571	3		47905 9	2	4	
	100-1000ul	15000	3	5	0.02	0.218354	9825.	900	9 776.3	10602	4	
		15000	3	5	0.03	0.218354 571	9825. 95571	900	47905	.3036	81325	
	(NPX-1000)					571	3		47905 9	2	4	
							3		9	2	4	
	T I	00.207										
	Total	99.307										
	Amount per	90209										
	sample											
NA	Decimation	color.	Ni	heur	number -	Nu of	Color	No -f	nc -f	Niccore I:	A	۰
Manp	Designation	salary	Num	hours	number	Nu. Of	Salary	No. of	no. of	Numb	Amou	Amo
ower			ber	work	of days	hours per	per	hours	hours	er of	nt	unt
			of	each	work per	month	hour	for	for	speci	spent	spen
			pers	day	month			this	spent	mens	per	t for
			ons					work/	each	proces	month	requ
								day	month	sed	for	ired
										per	staff	staff
										month	salary	per
												sam
												ple
	Techcician	18000	1	8	22	176	102.2	2	44	400	4500	11.2
							72727					5
							3					
	Research	31000	2	8	22	176	176.1	4	176	400	31000	77.5
	Assistant						36363					
							6					
	Scientist	12630	1	8	22	176	717.6	1	22	400	15787	39.4
		0					13636				.5	687
							4					5
	Multitaskin	17000	1	8	22	176	96.59	2	44	400	4250	10.6
	g staff						09090					25
							9					
	Total	138.84										
	Amount per	375										
	sample											
-	1	1		1	1	1	1	1		1	1	
Physic	Room	Servic	Area	Month	Rental to	Rental to	1	1		1	1	
al		e for	(in	ly	be used	be used						
Infrast		which	sqft)	Rental	for	for						
ructur		room		Price	calculati	calculatio						
e		is used		(per	on/mont	n/sample						
-				sqft),	h	,						
				space								
				used								
	1	1	1	uscu	1	1	1	I		1	1	
1				for								

				other				1	1		
				purpos							
				e also							
	Separation	Sampl	78	7020	7020	17.55					
	Room	e	/0	7020	7020	17.55					
		separa									
		tion									
	RNA	RNA	160	14400	7200	18					
	extraction	extrac									
	room	tion									
	Clean room	Reage	160	14400	7200	18					
		nt									
		prepar									
		ation									
	Machine	PCR	192	17280	4320	10.8					
	room										
	Total	64.35									
	Amount per										
	sample										
	1	1					1			1	
Overh	Cost Head	Consu	Freq	Consu	Cost/test						
ead		mptio	uenc	mptio							
		n	y of	n							
		(specif	use	(specif							
		ic to		ic to							
		servic		service							
		e in		in							
		cost)/		cost)/							
		day		Month							
	Ele etui eitu	400.02	- Friday	S	20.00202						
	Electricity	408.83 5	Ever y day	12265. 05	30.66262 5						
	Water	36	Ever	1080	2.7						
	water	30	y day	1080	2.7						
	Telephone/	10	Ever	300	0.75						
	Fax/Printers		y day								
	Laundry	10	Ever	300	0.75						
			y day								
	Sanitation	10	Ever	300	0.75						
			y day								
	Sterilization	20	Ever	600	1.5						
			y day								
	Others	5	Ever	150	0.375						
			y day								
	Total	37.487									
	Amount per	625									
	sample										
Reage	Total	1675.0									
nts/		7									
Consu											
mable											
S											
		<u> </u>		1	I	1	<u> </u>		I	l	I

Grand	2015.05927						
total	7						
(Rs)							

Annexures 2: Artus- Qiagen

Capita	Equipment	Unit	Quan	Expect	Dicount	Annual	Equivl	Annua	Presen	Annua	Appor	
1	_quipment	Price	tity	ed life	Rate	Factor	ent	1	t	1 Cost	tioned	
1				(yrs)		1	Unit	Maint	Worth	1 2000	Cost/	
				of			Annua	enanc	value		sampl	
				Equip			1 Cost	e Cost	of		e	
				ment			Capita	C COSI	Maint			
				ment			l Lapita		enanc			
							1		enanc e			
	Laminar Air	50000	1	10	0.03	0.117230	58615.	5000	e 3720.4	62335.	12.986	
	Flow	0	1	10	0.03	507	2533	3000	69574	72288	60893	
	Benchtop	25000	2	10	0.03	0.117230	2333 58615.	5000	3720.4	62335.	12.986	
	centrifuge	0	2	10	0.05	507	2533	5000	69574	72288	60893	
	with rotor	0				507	2333		09374	12288	00895	
	for 2 ml											
	reaction											
	tubes											
	Rotor-	12500	1	10	0.03	0.117230	14653	12500	9301.1	15583	32.466	
	Gene® Q	00	1	10	0.05	507	8.1333	12500	73936	9.3072	52233	
	5plex HRM	00				507	0.1555		13730	7.3012	52255	
	platform,											
	cat no.											
	сат по. 9001580											
	Vertical	20000	1	10	0.03	0.117230	23446.	2000	1488.1	24934.	5.1946	
	Autoclave	0	•		0.00	507	10132	2000	8783	28915	43573	
	Vortex	20000	2	10	0.03	0.117230	4689.2	400	297.63	4986.8	1.0389	
	mixer	0	-			507	20264		7566	5783	28715	
	Mini Plate	50000	1	10	0.03	0.117230	5861.5	500	372.04	6233.5	1.2986	
	spinner	2 2 2 0 0 0				507	2533		69574	72288	60893	
	Mini Spin	20000	1	10	0.03	0.117230	2344.6	200	148.81	2493.4	0.5194	
	- 1					507	10132		8783	28915	64357	
	-20 (freezer)	10000	1	10	0.03	0.117230	11723.	1000	744.09	12467.	2.5973	
		0				507	05066		39149	14458	21787	
	Refrigerator	30000	1	10	0.03	0.117230	3516.9	300	223.22	3740.1	0.7791	
						507	15198		81745	43373	96536	
	Computer	40000	1	10	0.03	0.117230	4689.2	400	297.63	4986.8	1.0389	
	system					507	20264		7566	5783	28715	
	UPS	10000	1	10	0.03	0.117230	11723.	1000	744.09	12467.	2.5973	
		0				507	05066		39149	14458	21787	
	Air	40000	4	10	0.03	0.117230	18756.	1600	1190.5	19947.	4.1557	
	conditioner					507	88106		50264	43132	14858	
	(AC)											
	Printer cum	15000	1	5	0.03	0.218354	3275.3	300	258.78	3534.1	0.7362	
	scanner					571	18571		26353	01206	71085	
	Pipettes:			1		1	1	1	1	1		
	(Genaxy)											
	2-20u1	15000	3	5	0.03	0.218354	9825.9	900	776.34	10602.	2.2088	
	(NPX-20)					571	55713		79059	30362	13254	
	20-200ul	15000	3	5	0.03	0.218354	9825.9	900	776.34	10602.	2.2088	
	(NPX-200)					571	55713		79059	30362	13254	
	100-1000ul	15000	3	5	0.03	0.218354	9825.9	900	776.34	10602.	2.2088	
	(NPX-					571	55713		79059	30362	13254	
	1000)											
	Total	85.022										
	Amount per	63226										
	sample											
		•	•	•	•	•	•	•	•	•	•	

Manpo wer	Designation	salary	Num ber of perso ns	hours work each day	number of days work per month	Nu. Of hours per month	Salary per hour	No. of hours for this work/ day	no. of hours for spent each month	Numb er of speci mens proces sed per month	Amou nt spent per month for staff salary	Am ount spen t for requ ired staff per sam ple
	Techcician	18000	1	8	22	176	102.27 27273	2	44	400	4500	11.2 5
	Research Assistant	31000	2	8	22	176	176.13 63636	4	176	400	31000	77.5
	Scientist	12630 0	1	8	22	176	717.61 36364	1	22	400	15787. 5	39.4 687 5
	Multitaskin g staff	17000	1	8	22	176	96.590 90909	2	44	400	4250	10.6 25
	Total Amount per sample	138.84 375										
Physic al Infrast ructure	Room	Servic e for which room is used	Area (in sqft)	Month ly Rental Price (per sqft), space used for other purpos e also	Rental to be used for calculati on/mont h	Rental calculatio n/sample						
	Separation Room	Sampl e separat ion	78	7020	7020	17.55						
	RNA extraction room	RNA extract ion	160	14400	7200	18						
	Clean room	Reage nt prepar ation	160	14400	7200	18						
	Machine room	PCR	192	17280	4320	10.8						
	Total Amount per sample	64.35										
Overh ead	Cost Head	Consu mption (specif ic to	Freq uenc y of use	Consu mption (specif ic to	Cost/test							

						1			1
		service		service					
		in		in					
		cost)/d		cost)/					
		ay		Month					
				s					
	Electricity	408.83	Ever	12265.	30.66262				
		5	y day	05	5				
	Water	36	Ever	1080	2.7				
			y day						
	Telephone/	10	Ever	300	0.75				
	Fax/Printers		y day						
	Laundry	10	Ever	300	0.75				
	2		y day						
	Sanitation	10	Ever	300	0.75				
			y day						
	Sterilization	20	Ever	600	1.5				
			y day						
	Others	5	Ever	150	0.375				
			y day						
	Total	37.487							
	Amount per	625							
	sample								
	-						 		
Reage	Total	1575.9							
nts/		9							
Consu									
mables									
Grand	1901.69400						 		
total	7								
(Rs)									
(110)									

Annexures 3: TRUPCR - 3B BlackBio Bhopal

Capital	Equipment Laminar Air Flow Benchtop centrifuge	Unit Price 50000 0 25000 0	Qua ntity 1 2	Expect ed life (yrs) of Equip ment 10	Dicount Rate 0.03 0.03	Annual Factor 0.117230 507 0.117230 507	Equivl ent Unit Annua I Cost Capita I 58615 .2533 58615 .2533	Annua I Maint enanc e Cost 5000	Prese nt Worth value of Maint enanc e 3720. 46957 4 3720. 46957	Annua I Cost 62335 .7228 8 62335 .7228	Appor tioned Cost/ sampl e 12.98 66089 3 12.98 66089	
	with rotor for 2 ml reaction tubes								4	8	3	
	7500 Fast Dx Real time PCR instrument (Applied Biosystems) with Laptop & accessories	18000 00	1	10	0.03	0.117230 507	21101 4.911 9	18000	13393 .6904 7	22440 8.602 4	46.75 17921 6	
	Vertical Autoclave	20000 0	1	10	0.03	0.117230 507	23446 .1013 2	2000	1488. 18783	24934 .2891 5	5.194 64357 3	
	Vortex mixer	20000	2	10	0.03	0.117230 507	4689. 22026 4	400	297.6 37566	4986. 85783	1.038 92871 5	
	Mini Plate spinner	50000	1	10	0.03	0.117230 507	5861. 52533	500	372.0 46957 4	6233. 57228 8	1.298 66089 3	
	Mini Spin	20000	1	10	0.03	0.117230 507	2344. 61013 2	200	148.8 18783	2493. 42891 5	0.519 46435 7	
	-20 (freezer)	10000 0	1	10	0.03	0.117230 507	11723 .0506 6	1000	744.0 93914 9	12467 .1445 8	2.597 32178 7	
	Refrigerator	30000	1	10	0.03	0.117230 507	3516. 91519 8	300	223.2 28174 5	3740. 14337 3	0.779 19653 6	
	Computer system	40000	1	10	0.03	0.117230 507	4689. 22026 4	400	297.6 37566	4986. 85783	1.038 92871 5	
	UPS	10000 0	1	10	0.03	0.117230 507	11723 .0506 6	1000	744.0 93914 9	12467 .1445 8	2.597 32178 7	
	Air conditioner (AC)	40000	4	10	0.03	0.117230 507	18756 .8810 6	1600	1190. 55026 4	19947 .4313 2	4.155 71485 8	

	Printer cum scanner	15000	1	5	0.03	0.218354 571	3275. 31857	300	258.7 82635	3534. 10120	0.736 27108	
	Pipettes: (Genaxy)						1		3	6	5	
	2-20ul (NPX-20)	15000	3	5	0.03	0.218354 571	9825. 95571 3	900	776.3 47905 9	10602 .3036 2	2.208 81325 4	
	20-200ul (NPX-200)	15000	3	5	0.03	0.218354 571	9825. 95571 3	900	776.3 47905 9	10602 .3036 2	2.208 81325 4	
	100-1000ul (NPX-1000)	15000	3	5	0.03	0.218354 571	9825. 95571 3	900	776.3 47905 9	10602 .3036 2	2.208 81325 4	
	Total Amount per sample	99.307 90209										
Manp ower	Designation	salary	Num ber of pers ons	hours work each day	number of days work per month	Nu. Of hours per month	Salary per hour	No. of hours for this work/ day	no. of hours for spent each month	Numb er of speci mens proces sed per month	Amou nt spent per month for staff salary	Amo unt spen t for requ ired staff per sam ple
	Techcician	18000	1	8	22	176	102.2 72727 3	2	44	400	4500	11.2 5
	Research Assistant	31000	2	8	22	176	176.1 36363 6	4	176	400	31000	77.5
	Scientist	12630 0	1	8	22	176	717.6 13636 4	1	22	400	15787 .5	39.4 687 5
	Multitaskin g staff	17000	1	8	22	176	96.59 09090 9	2	44	400	4250	10.6 25
	Total Amount per sample	138.84 375										
Physic al Infrast ructur e	Room	Servic e for which room is used	Area (in sqft)	Month ly Rental Price (per sqft), space used for other	Rental to be used for calculati on/mont h	Rental to be used for calculatio n/sample						

	1								1
				purpos e also					
	Concention	Control	70		7020	17 55			
	Separation	Sampl	78	7020	7020	17.55			
	Room	e							
		separa tion							
	RNA	RNA	160	14400	7200	18			
	extraction	extrac	100	14400	7200	10			
	room	tion							
	Clean room	Reage	160	14400	7200	18			
	clean room	nt	100	14400	7200	10			
		prepar							
		ation							
	Machine	PCR	192	17280	4320	10.8			
	room	1 Cit	152	17200	1520	10.0			
	Total	64.35							
	Amount per	0.100							
	sample								
Overh	Cost Head	Consu	Freq	Consu	Cost/test				
ead		mptio	uenc	mptio	,				
		n	y of	n					
		(specif	use	(specif					
		ic to		ic to					
		servic		service					
		e in		in					
		cost)/		cost)/					
		day		Month					
				s					
	Electricity	408.83	Ever	12265.	30.66262				
		5	y day	05	5				
	Water	36	Ever	1080	2.7				
			y day						
	Telephone/	10	Ever	300	0.75				
	Fax/Printers		y day						
	Laundry	10	Ever	300	0.75				
			y day						
	Sanitation	10	Ever	300	0.75				
			y day						
	Sterilization	20	Ever	600	1.5				
			y day						
	Others	5	Ever	150	0.375				
			y day						
	Total	37.487							
	Amount per	625							
	sample								
Reage		1320.1							
nts/									
Consu									
mable									
S									

Grand	1660.08927						
total	7						
(Rs)							

Annexures 4: Xpert Flu- Cepheid

Capital	Equipment	Unit	Qua	Expect	Dicount	Annual	Equivl	Annua	Prese	Annua	Appor	
cupitui	Equipment	Price	ntity	ed life	Rate	Factor	ent	I	nt	l Cost	tioned	
			increy	(yrs) of	ilate		Unit	Maint	Worth		Cost/	
				Equip			Annua	enanc	value		sampl	
							I Cost		of		-	
				ment				e Cost			е	
							Capita		Maint			
							1		enanc			
									е			
	Laminar Air	50000	1	10	0.03	0.117230	58615	5000	3720.	62335	12.98	
	Flow	0				507	.2533		46957	.7228	66089	
									4	8	3	
	Benchtop	25000	1	10	0.03	0.117230	29307	2500	1860.	31167	6.493	
	centrifuge	0				507	.6266		23478	.8614	30446	
	with rotor						5		7	4	6	
	for 2 ml											
	reaction											
	tubes											
	GeneXpert	30090	1	10	0.03	0.117230	35274	30090	22389	37513	78.15	
	GXIV-4-L	00	-		0.00	507	6.594	23030	.7859	6.380	34125	
	(4modules)					507	4		.,055	3	6	
		20000	1	10	0.02	0 117220	4 23446	2000	1400			
	Vertical	20000	T	10	0.03	0.117230		2000	1488.	24934	5.194	
	Autoclave	0				507	.1013		18783	.2891	64357	
							2			5	3	
	Vortex	20000	1	10	0.03	0.117230	2344.	200	148.8	2493.	0.519	
	mixer					507	61013		18783	42891	46435	
							2			5	7	
	Refrigerator	30000	1	10	0.03	0.117230	3516.	300	223.2	3740.	0.779	
						507	91519		28174	14337	19653	
							8		5	3	6	
	Computer	40000	1	10	0.03	0.117230	4689.	400	297.6	4986.	1.038	
	system					507	22026		37566	85783	92871	
							4				5	
	UPS	10000	1	10	0.03	0.117230	11723	1000	744.0	12467	2.597	
	010	0	-	10	0.05	507	.0506	1000	93914	.1445	32178	
		0				507			9	8	7	
	Air	40000	2	10	0.02	0 117220	6	800				
	Air	40000	2	10	0.03	0.117230	9378.	800	595.2	9973.	2.077	
	conditioner					507	44052		75131	71566	85742	
	(AC)			L			8		9		9	
	Printer cum	15000	1	5	0.03	0.218354	3275.	300	258.7	3534.	0.736	
	scanner					571	31857		82635	10120	27108	
							1		3	6	5	
	Pipettes:											
	(Genaxy)											
	2-20ul	15000	1	5	0.03	0.218354	3275.	300	258.7	3534.	0.736	
	(NPX-20)					571	31857		82635	10120	27108	
							1		3	6	5	
			L	5	0.03	0.218354	3275.	300	258.7	3534.	0.736	
	20-200ul	15000	1	5			1 / 0.					
	20-200ul (NPX-200)	15000	1	5		571	31857		82635	10120	27108	
	20-200ul (NPX-200)	15000	1	5		571	31857 1		82635 3	10120 6	27108 5	
	(NPX-200)						1	200	3	6	5	
	(NPX-200) 100-1000ul	15000 15000	1	5	0.03	0.218354	1 3275.	300	3 258.7	6 3534.	5 0.736	
	(NPX-200)						1	300	3	6	5	

	Total Amount per sample	112.78 58227										
Manp ower	Designation	salary	Num ber of pers ons	hours work each day	number of days work per month	Nu. Of hours per month	Salary per hour	No. of hours for this work/ day	no. of hours for spent each month	Numb er of speci mens proces sed per month	Amou nt spent per month for staff salary	Amo unt spen t for requ ired staff per sam ple
	Techcician	18000	0	8	22	176	102.2 72727 3	2	0	400	0	0
	Research Assistant	31000	1	8	22	176	176.1 36363 6	8	176	400	31000	77.5
	Scientist	12630 0	1	8	22	176	717.6 13636 4	1	22	400	15787 .5	39.4 687 5
	Multitaskin g staff	17000	1	8	22	176	96.59 09090 9	2	44	400	4250	10.6 25
	Total Amount per sample	127.59 375										
Physic al Infrast ructur e	Room	Servic e for which room is used	Area (in sqft)	Month ly Rental Price (per sqft), space used for other purpos e also	Rental to be used for calculati on/mont h	Rental to be used for calculatio n/sample						
	Separation Room	Sampl e separa tion	78	7020	7020	17.55						
	Machine room	PCR	192	17280	4320	10.8						
	Total Amount per sample	28.35										
Overh ead	Cost Head	Consu mptio	Freq uenc	Consu mptio	Cost/test							

	1		1			1	1		1	1	
		n	y of	n							
		(specif	use	(specif							
		ic to		ic to							
		servic		service							
		e in		in							
		cost)/		cost)/							
		day		Month							
				s							
	Electricity	98.35	Ever	2950.5	7.37625						
			y day								
	Water	18	Ever	540	1.35						
			y day								
	Telephone/	10	Ever	300	0.75						
	Fax/Printers		y day								
	Laundry	10	Ever	300	0.75						
			y day								
	Sanitation	10	Ever	300	0.75						
			y day								
	Sterilization	20	Ever	600	1.5						
			y day								
	Others	5	Ever	150	0.375						
			y day								
	Total	12.851									
	Amount per	25									
	sample										
Reage		4060.7									
nts/		5									
Consu											
mable											
s											
Grand	4342.33082										
total	3										
(Rs)											
	1					1					