Minutes of the 480th meeting of the State Level Expert Appraisal Committee held on 06/02/2019 at Geer Foundation, Sector 9, Indroda Park, Gandhinagar.

The 480th meeting of the State Level Expert Appraisal Committee (SEAC) was held on 06th February 2019 at Geer Foundation, Sector 9, Indroda Park, Gandhinagar. Following members attended the meeting:

- 1. Dr. Dinesh Misra, Chairman, SEAC
- 2. Shri S. C. Srivastav, Vice Chairman, SEAC
- 3. Shri V. N. Patel, Member, SEAC
- 4. Shri R. J. Shah, Member, SEAC
- 5. Shri A.K. Muley, Member, SEAC

The additional agenda of TOR/Scoping cases and Appraisal was taken up. The applicants made presentations on the activities to be carried out along with other details furnished in the Form-1, PFR, EIA-EMP reports and other reports.

8.	SIA/GJ/IND2/30648/2017	M/s: Hem-Deep Organics Pvt.	Appraisal
		Ltd. (Suleshvari Pharma), Plot	
		no.3801/2 & 3802,GIDC Ind.	
		Estate, Ankleshwar, Bharuch	

Category of the unit: 5(f)

Project status: Expansion

- Project proponent (PP) has submitted online application vide no. SIA/GJ/IND2/30648/2017 dated 16/01/2019 for obtaining Environmental Clearance.
- MoEF & CC issued TOR to PP vide letter No- IA-J-11011/374/2017-IA II(I) dated 24 Aug 2017.
- Project proponent has submitted EIA Report prepared by M/s: Aqua Air Environmental Engineering Pvt.
 Ltd based on the TOR issued by MoEF & CC.
- This is an existing unit engaged in Synthetic organic chemicals and now proposes for expansion as tabulated below:

Sr. No.	Products		CAS No.		
		Existing	Additional	Total	
1	Oxyclozanide	3.5	0	3.5	2277-92-1
2	Furosemide	2.5	2.5	5.0	54-31-9
3	Diaminomethyleneamino (1-amino-1- iminomethylene) thiomethyl thiozole dihydrochloride [ITU]	0	100	100	123-92-2
4	N-Sulfomyl-3-chloropropionamide hydrochloride[IF]	0	100	100	105-68-0
5	Famotidine	0	10	10	76824-35-6
6	Fomepizole		25	25	14205-39-1
7	Colsevelam hydrochloride		25	25	88150-62-3

	To	otal 6.0	737.5	743.5	
52	Poly Allaylamine Hydrochloride		500	500	122-70-3
51	Sevelamer Carbonate		<u></u>		103-45-7
50	Sevelamer Hydrochloride				106-27-4
49	Nebivilol Hydrochloride]		152520-56-4
48	Amlodipine Besylate				111470-99-6
47	Aripiprazole				129722-12-9
46	Quetipine Fumrate				111974-72-2
45	Amodafinil				68693-11-8
44	Itopride Hydrochloride				122892-31-3
43	Febuxostat				144060-53-7
42	Mesalamine				89-57-6
41	Pioglitazone Hydrochloride				112529-15-4
40	Lasamide				2736-23-4
39	Citrezine Hydrochloride				83881-52-1
38	Albendazole				54965-21-8
37	Gabapentine				60142-96-3
36	Loratidine				79794-75-5
35	Desloratadine]		148553-50-8
34	Ecanazole Nitrate				189005-44-5
33	Miconazole Nitrate				59-30-3
32	Ondansetron Hydrochloride]		1197-18-8
31	Zaltoprofen				137862-53-4
30	Benzbromarone				202409-33-4
29	Benzarone		1		134523-03-8
28	Chlorohexidine Base				120202-66-6
27	Pregabaline		_		169590-42-5
26	Zolpidic Acid		4		72956-09-3
25	Folic Acid		4		117976-90-6
24	Tranexamic Acid		4		2114-02-5
23	Valsartan		4		534-07-6
22	Etoricoxib				147098-20-2
21	Atoravastatin Calcium		4		8068-28-8
20	Clopidogrel Bisulfate		4		175591-09-0
19	Celecoxib		4		144701-48-4
18	Carvediol		1		106685-40-9
17	Rabeprazole Sodium		1		5579-84-0
16	Gunylthiourea				93479-97-1
15	1-3 dichloro Acetone		1		182815-44-7
14	Rusvastatin Calcium				7554-65-6
13	Colistimethate Sodium		_		71550-12-4
12	Tapentadol Hydrochloride		=		845273-93-0
11	Telmisartan				152751-57-0
10	Adapalene		=		76824-35-6
9	Betahistine Dihydrochloride		=		106649-95-0
			1		4000:

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 06/02/2019.
- Salient features of the project are as under :

Sr. no.	Particulars		Details			
Α	Total cost of Proposed F		Existing: 0.50 Cr			
	(Rs. in Crores):		Proposed: 3.5 C			
_	T (ID) (Total: 4.0 Crores			
В	Total Plot area		Existing: 2619.5			
	(sq. meter)		Proposed: 2833. Total: 5452.7 Sc			
	Green belt area		Existing: 0 Sq. m			
	(sq. meter)		Proposed: 1800			
	(oq. motor)		Total: 1800 Sq. i			
С	Employment generation		Existing: 4			
			Proposed: 20			
_		-	Total: 24			
<u>D</u>	Water	ı	OID O			
İ	Source of Water Supply		GIDC water sup	ply		
	(GIDC Bore well, Surface					
	water, Tanker supply etc Status of permission fro		Init has obtaine	d permission for	required quantity	of water
	concern authority.		onit nas obtaine	a permission for	required quantity	or water
ii	Water consumption (KL	D)				
		Existing	Proposed	Total after	Remarks	
		KLD	(Additional)	Expansion		
	(A) D	4	KLD	KLD		
	(A) Domestic	1	1 1	2		
	(B) Gardening		5	5		
	(C) Industrial					
	Process	2.43	26.27	28.7		
	Washing	3	2	5		
	Boiler	2.5	12.5	15		
	Cooling	3	12	15		
	Others(Scrubbing)	0	1.3	1.3		
	Industrial Total	10.93	54.07	65		
	Grand Total (A+B+C)	11.93	60.07	72 KLD		
	Total water requ			KLD		
	2) Quantity to be re	-				
:::	3) Total fresh water	<u> </u>	HIL. 12 NLD			
iii	Waste water generation		Droposed	Total after	Domarka	
	Category	Existing KLD	Proposed (Additional)	Total after Expansion	Remarks	
		NLD	(Additional) KLD	KLD		
		1	1	2		\exists
	(A) Domestic	ļ ļ				_
	(A) Domestic (B) Industrial	1				
	(B) Industrial		19.15	22.1		
	` '	2.95	19.15	22.1 5		
	(B) Industrial Process	2.95				
	(B) Industrial Process Washing	2.95	2 0.25 0.1	5		
	(B) Industrial Process Washing Boiler Cooling Others(Scrubbing)	2.95 3 0.25	2 0.25	5 0.5		
	(B) Industrial Process Washing Boiler Cooling	2.95 3 0.25 0	2 0.25 0.1	5 0.5 0.1		

	rimary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc
	rimary Treatment: 30 KL/Day
	pak Pit: 2.5 KL/Day
v Mode of Disposa Domestic:	I & Final meeting point 2 KI/Day domestic wastewater will be disposed through Septic
Domestic.	Tank/Soak Pit.
Industrial:	Low COD Industrial effluent @ 23.1 KLD is collected will be
madotiai.	treated in ETP consists of primary treatment and finally sent to
	CETP of ETL for final treatment and disposal.
	,
	High COD Industrial effluent @ 5 KLD will be treated in ETF
	consists of primary treatment and sent to Common MEE of M/s
	ACPTCL.
	1.9 KLD of Dilute HCL (30%) Solution, Dilute Sodium Bisulphite
	and Dilute Sodium Bromide solution will be sell to end users
	having rule 9 Permission.
	on facility (CF) like CETP, Common Spray dryer, Common MEE, CHWIF etc.
Name of Commo	
	M/s. ACPTCL & Discharge Letter of M/s. ETL
	ommon facility (CF)
(For waste water	
	ed membership of Common MEE of M/s. ACPTCL. balance diagram with reuse / recycle of waste water
vii Siiripiilieu watei	balance diagram with reuse / recycle of waste water
	Raw Water: 72 KL/Day from GIDC
	
	<u> </u>
Domestic Process 2 KL/Day 30 KL/Da	Cooling
2 KL/Day 30 KL/Da	ny Tower 15 KL/Day 5 KL/Day 1.3 KL/Day 5 KL/Day 5 KL/Day 15 KL/D
<u> </u>	
2 KL/Day → 22.1 KL/Da	9 0.5 KL/Day 0.5 KL/Day 1.9 KL/Day
Septic tank V	
	ETP: 28.1 KL/Day Dilute HCL solution, Dilute
	(Low COD + High COD Stream) Sodium Bisulphite and Dilute
	Sodium Bromide solution will be sell to end users having rule 9
	Permission
	<u> </u>
	LKLD (Low COD) Final 5 KLD (High COD) Final sted effluent to CETP treated effluent to
	further Treatment. Common MEE of M/s.
	ACPTCL.
	. 11. (4.1.2)
vii Reuse/Recycle d	etails (KLD)

Air												
_	gas emiss	ion details										
No. of Boilers/TFH/Furnaces/DG sets etc. with capacities viz. TPH, Kcal/hr, MT/hr, KVA etc.												
Exist	Existing & Proposed											
- Exist	tina											
		Source of	Stack		Quantity of	Type of	f Air Pollution					
	Sr.	emission	Height	Type	Fuel	emission						
	no.	With	(meter)	of Fuel	MT/Day	i.e. Air						
		Capacity Non IBR	,		10	Pollutan	ts (APCM)					
		Boiler		Natural	SM ³ /Day	SPM	Adequate					
	1	(Capacity:	12	Gas or	or 500	SO ₂	Stack Height					
		0.6TPH)		LDO	Lit/Day	NOx						
Total	l Proposed	 		1		T	Ai-Dau C					
	Sr.	Source of	Stack	Туре	Quantity of	Type of emission						
	no.	emission	Height	of Fuel	Fuel	i.e. Air						
		With Capacity	(meter)		MT/Day	Pollutant						
		Boiler										
	1	(Existing)	12	Natural	300 Sm³/Day		Adequate					
		(Capacity: 0.6TPH)		Gas	Sili /Day		Stack Height					
		Boiler					Multicyclone					
	2	(Proposed)	30	Bio	8 MT/Day		separator					
		(Capacity: 2.0	30	Coal	O WIT/Day	SPM	with bag					
		TPH) Thermic fluid				SO_2	filter					
		heater				NOx	Multicyclone					
	_	(Proposed)	20	Bio	O MT/Day		separator					
	3	(Capacity: 4	30	Coal	2 MT/Day		with bag					
		Lakh					filter					
		KCal/Hr.)					Adequate					
	4	D. G. Set	11	HSD	20 Litre/Hr		Stack Height					
-		-		l .								
		e. Type of polluta	nt gases ((SO _{2,} HCI,	NH_{3} , CI_{2} , NO_{x}	etc.)						
- EXIS	ting & Prop	oseu										
Exist	ing											
	Sr.	Source of	Tı	pe of	Stack/Ve	ent	Air Pollution					
	no.	emission		ission	Height (me	1 (:	ontrol Measures					
	-	Process Vent		SO ₂	J (,	(APCM)					
	1	(Reactor		3O₂ HCl	10	T	wo Stage Alkali					
		Vessel)		HBr			scrubber					
Prop	osed											
	Sr.	Source of	Ty	pe of	Stack/Ve	ent 📗	Air Pollution					
	no.	emission		ission	Height (me	eter)	Control Measures (APCM)					
		Process Ve	nt		4.4	 	Two Stage water					
	1	(Reactor		HCI	11		scrubber					

	Vessel)			
2	Process Vent (Reactor Vessel)	SO ₂	11	Two Stage Alkali scrubber

iii Fugitive emission details with its mitigation measures.

Following measures will be adopted to prevent and control fugitive emissions...

- 1. Airborne dust at all transfers operations/ points will be controlled either by spraying water or providing enclosures.
- 2. Care will be taken to store construction material properly to prevent fugitive emissions, if any.
- 3. Regular maintenance of valves, pumps, flanges, joints and other equipment will be done to prevent leakages and thus minimizing the fugitive emissions of VOCs.
- 4. Entire process will be carried out in the closed reactors with proper maintenance of pressure and temperature.
- 5. Periodic monitoring of work area will be carried out to check the fugitive emission.
- 6. Breather valves will be provided on solvent tanks.
- 7. Solvent tank vents will be connected to vent chillers.
- 8. To eliminate chances of leakages from glands of pumps, mechanical seal will be provided at all solvent pumps.
- 9. Close feeding system will be provided for centrifuges. Centrifuge and filtrate tank vents will be connected to vent chillers.
- 10. Minimum number of flanges, joints and valves in pipelines.
- 11. Enclosures to chemical storage area, collection of emission from loading of raw materials in particular solvents through hoods and ducts by induced draft, and control by scrubber / dust collector to be ensured.
- 12. Nitrogen blanketing will be provided, besides special care needs to be taken for control in respect of odorous chemicals.

F Hazardous waste

(as per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016. Existing & Proposed

Sr. Hazardous/Solid No Waste						T	
		Source	Category	Qua Existing	ntity Total after proposed expansion	Mode of Disposal	
1	Discarded HDPE Drums/Bags	Material Handling	SCH-I- 33.1	200 Nos./ Year (4 MT/ Year)	1000 Nos./ Month	Collection, Storage, Transportation and sell to Register Re- processors after decontamination.	
2	Used / Spent Oil	Machinery & Equipment	SCH-I- 5.1	5.0 Lit/Year	10 Lit/ Month	Collection, Storage, Transportation and reuse within premises.	
3	ETP Sludge	ETP	SCH-I- 35.3		5 MT/ Month	Collection, Storage, Transportation and sent t	

4	Distillation Residue	Solvent Distillation Plant	SCH-I- 28.1	750 Kg/ Month	24.5 MT/ Month	common TSDF of M/s. BEIL. Collection, Storage, Transportation and sent for co-processing in cement industries or sent to common incineration at BEIL.
5	Spent Solvent	Process (From Product No. 1,2,3,4,5,14)	SCH-I- 28.1	75 MT/Month	1000 MT/ Month	Collection, Storage, Transportation and Recovered by solvent distillation plant.
6	Spent Carbon	Process (From Product No. Furosemide & Benzarone	SCH-I- 28.2	150 Kg/ Month	2 MT/ Month	Collection, Storage, Transportation and sent for co- processing in cement industries or sent to common incineration at BEIL.
7	HCL 30 %	Scrubber & Process (N- Sulfomyl-3- chloropropionamide hydrochloride[IF] & Lasamide)	SCH-II- B15	2.0 MT/ Month	46 MT/ Month & 150 MT/ Month	Collection,
8	Sodium Bysulphite Solution (25%)	Scrubber	SCH-II- B-36	3 MT/ Month	8.5 MT/ Month	Storage, Transportation and sell to end
9	Sodium Bromide Solution	Scrubber	SCH-II- B-36	2.5 MT/ Month	2.5 MT/ Month	users having rule 9 permission.
10	KCL Cake	Process (Benzarone)	SCH-I- 28.1		30 MT/ Month	
11	Spent Sulfuric Acid (40%)	Process (Mesalmine)	SCH-II- B-36		163.75 MT/ Month	
12	Spent Catalyst	Process (Atorvastatin)	SCH-I- 28.3		2 MT/ Month	Collection, Storage, Transportation and sent to regenerator
13	Inorganic Salt	Process (Benzarone)	SCH-I- 28.1		20 MT/ Month	Collection, Storage, Transportation and sent to

								common TSDF
								at BEIL.
								Collection,
								Storage,
		Organic					25 MT/ Month	Transportation
			Р	rocess	SCH-I-			and sent for co- processing in
	14	Process Waste	(Ru	svastatin	28.1			cement
		1 100033 Wasic	Ca	alcium)	20.1		Wichiti	industries or sent
								to common
								incineration at
								BEIL.
	-							
ii		bership details of T	SDF,					Facility of M/s. BEIL
		IF etc.		(Ankleshwa	r) for dispos	sal of hazard	ous wastes	from time to time.
iii		HW management) Is of Non-Hazardo		No non hor	ardaua waa	عم النبيية	a crata d	
III		e & its disposal(MS		INO HOH Haza	aruous was	te will be ger	ierateu.	
	other		vv anu					
G		ent management, V	OC emis	sions etc.				
i		s of solvents, Deta			, % recover	y. reuse of r	ecovered So	olvents
	Prima	ary Condenser HE	E-01: Co	oling Tower	water or C	hilled water	will be use	ed to condense the
					operating o	onditions an	d the non co	ondensedvapors will
		ondensed in a Seco						
					at - 5 0C w	ill be used to	o condense	the non condensed
		urs in the Seconda			lala	. 1		
		venting will be don of Spent solvent wi			n carbon co	olumn.		
ii		emission sources			SUITES			
"		g operation stage,				eakage and e	emission from	m open drum
		ining chemicals, o						
		OCs. Excess use						
	•	Solid raw materi	al chargii	ng will be don	e through c	losed system	٦.	
	•	Entire process w	ill be car	ried out in the	closed rea	ctors with pre	oper mainte	nance of pressure
		and temperature	·.			·	•	
	•	Close feeding sy	stem will	be provided	for centrifuc	ges. Centrifu	ge and filtrat	e tank vents will be
		connected to ver		•			3	
	•	Fugitive emission			lation areas	. centrifuges	. chemical lo	pading, transfer
		area, will be colle				_		_
		scrubber/dust co		ougoodo a	ina adoto by	aaooa a.a	ara corra	5.1104 57
	•	Emphasis will be		solvent man:	anamant/so	Jvent loss nr	evention	
	•	Control by havin	_		_	ivent loss pr	evention.	
		•	•	scrubbling sys	Stelli.			
	•	Condenser to tra	•	1				f (
	•			-			•	f raw materials in
		particular solven	_	h hoods and	ducts by inc	duced draft, a	and control b	by scrubber/dust
		collector to be er						
	•	Nitrogen blanket	-	-	esides spec	cial care need	ds to be take	en for control in
		respect of odoro	us chemi	icals.				
	•	Proper maintena	ince sche	edule will be a	dhered to a	avoid emissio	ns through	flange joints, pump
		seals etc.						

- Minimum number of flanges, joints and valves in pipelines.
- Proper gland packing will be maintained for pumps and valves and to the extent possible pumps with mechanical seal.
- All Flange joints of the pipe lines which carry solvents will be covered with flange guards.
- All rotating equipments like pumps will be installed with mechanical seals to arrest any sort of emissions.
- A regular preventive maintenance schedule will be in place to replace or rectify all gaskets and joints etc. as a part of ISO systems to ensure no fugitive emissions take place.
- Periodic monitoring of work area will be carried out to check the fugitive emission.
- Solvent tank vents will be connected to vent chillers.
- Stand by pumps will be provided on all scrubbers. Besides, scrubbers are equipped with online pH meter with hooter system for better operational control.
- Regular inspection of floating roof seals and proper preventive maintenance of roofs and seals for tanks.
- Adequate ventilation will be provided.
- During the meeting dated 06/02/2019, technical presentation made by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report, and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period March to May, 2017. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx,O3,Pb,NH3,CO,C6H6,As,Ni
- Cl2 and VOC at Nine locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using ISCST. Values of PM10 are higher in some villages due to transportation. But it is within limit of NAAQS Standard. SPM value at Kharchi Bhilwada is 140.8 μg/m3. Incremental Increase will be 0.1 μg/m3 of SPM due to flue gas emission. Adequate measure will be taken to reduce incremental increase due to proposed expansion. The values of TDS in Ground Water are high in Umarwada & Kharchi Bhilwada Villages & is found within the permissible limit as per inland surface water and IS 10:500 norms for potable water standard. Company will provide RO system in these villages for drinking water as a CER Activity. The modelling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios
 has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency
 Plan has been covered in the RA report.
- This unit was established well before year 2006. They have valid CC&A for existing unit. Copy of CC&A, its compliance report is submitted. PP ensured that there are no court cases pending and no public

complaints against the project.

The proposal is for expansion. Unit has valid CCA and compliance of CCA conditions were deliberated at length. This is an existing unit engaged in organic chemicals and now proposes for new synthetic organic chemical products. PP informed that earlier closure order issued to unit and Board given Revocation order after compliance made by the unit. Committee asked for after expansion, waste water discharge to CETP of M/s ETL increase from 6.2 KLD to 23.1 KLD only with respect to production increase from 6 MT/M to 743.5 MT/M which is not convincing and also CETP is non-complying with Direction under section 18(1)(b) of Water Act,74, PP satisfactorily not addressed about it. PP also not justified water consumption and waste water generation quantity with respect to production expansion quantity. Committee asked about storage tank area is inadequate with respect to storage tank to be installed. PP also not satisfactorily addressed about treatment for Ammonical nitrogen proposed and mentioning about ammonical nitrogen reduction from 100 mg/l to 40 mg/l. Committee asked clarification regarding acceptance of effluent having Ammonical Nitrogen-180 mg/l, sending to M/s ACPTCL, Ankleshwar which is not addressed properly by PP. Also PP represented about area adequacy of proposed plant. PP has not satisfactorily addressed hazardous waste management including generation and disposal of bleed liquor, spent solvent and spent acid. Committee insisted for budgetary fund allocation for EMP, Green belt and CER activity for five year instead of one year and PP agreed for fund allocation for five year for CER and green belt activity.PP addressed about LDAR and solvent recovery system. Committee deliberated all the TOR in detail with details of baseline data, GLC of PM10,PM2.5,SO2,NOx,O3,Pb,NH3,CO,C6H6,As,Ni,Cl2 and VOC. impact on surface water and ground water quality and Noise, EMP, CER with details of budgetary provisions.

After deliberation, SEAC unanimously decided to submit the following details of the project & consider the proposal after submission of the following details.

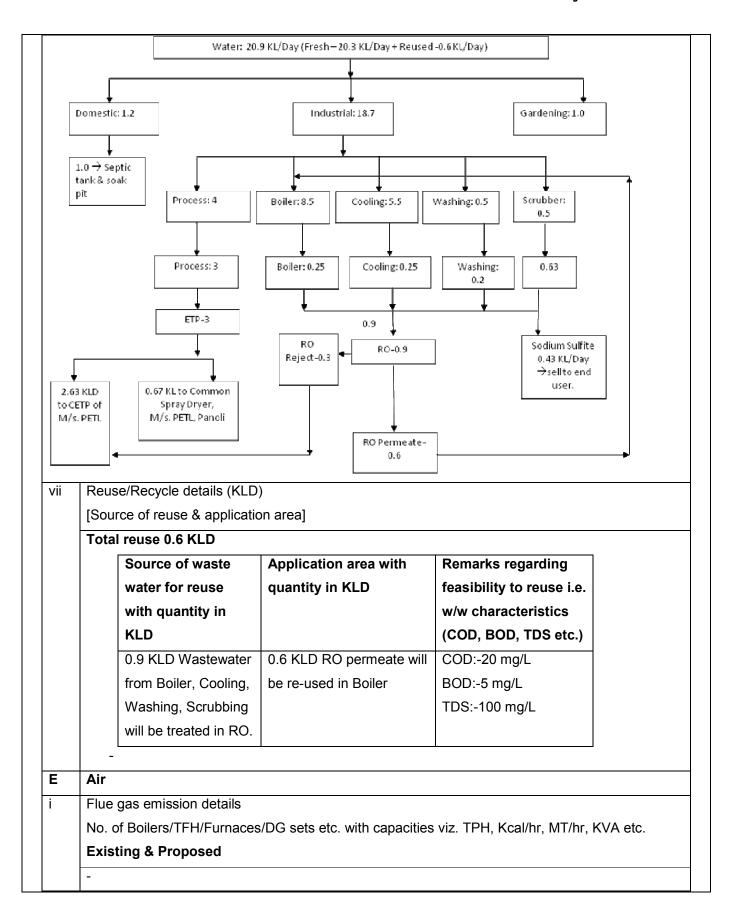
- 1. Justification regarding proposed water consumption & waste water generation with respect to Production expansion from 6 MT/M to 743.5 MT/Month.
- 2. Action plan for additional waste water generation considering 18 (1) (b) directions under the Water Act 1974 imposed by CPCB on CETP. Zero Liquid Discharge scheme for additional waste water in this regard.
- 3. Revised EMP showing Ammonical Nitrogen treatment in ETP and justification regarding effluent sending to common MEE having Ammonical nitrogen -180 mg/l which is not acceptable.
- 4. Revised hazardous waste details as per HW Rules 2016 along with MOU/ LOI with end users (with details of quantity) having rule 9 permission intending to use hazardous waste proposed in aforementioned table.
- 5. Revised plant lay out with respect to storage of hazardous chemicals considering safety aspects.

9.	SIA/GJ/IND2/29010/2018	M/s: Karunesh Remedies	Appraisal
		Plot No. 417/2, Phase-II, GIDC	

	Industrial Estate, Panoli,	
	Ankleshwar, Dist-Bharuch	

Category of the unit: 5(f)
Project status: Expansion

- Project proponent (PP) has submitted online application vide no. SIA/GJ/IND2/29010/2018 dated 17/01/2019 for obtaining Environmental Clearance.
- SEIAA issued TOR to PP vide letter SEIAA/GUJ/TOR/5(f)/1368/2018 dated 18/12/2018.
- Project proponent has submitted EIA Report prepared by M/s: Aqua Air Environmental Engineering Pvt.
 Ltd based on the TOR issued by SEIAA.
- This is an existing unit engaged in Synthetic organic chemicals and now proposes for expansion as tabulated below:


Sr.	Name of the Products	CAS no. /	Quar	ntity (MT/Mon	th)	End-use of the	
no.		CI no.	Existing	Proposed	Total	products	
1	Lamotrigine Intermediates (2,3 Dishlorophenyl (oxo) acetonitrile)	77668-42-9				Lamotrigine	
2	Cetirizine Dihydrochloride Intermediates (4- Chlorophenyl phenyl)methyl]piperazine	300543-56-0		00	03	Cetirizine DIhydrochloride	
3	Clopidogrel Bisulphate Intermediates (Methyl amino (2- chlorophenyl)acetate)	141109-14-0				Clopidogrel Bisulphate	
4	Cetirizine Dihydrochloride	83881-52-1	00	06	06	Anti-histamines	
5	Clopidogrel Bisulphate	120202-66-6	00	02	02	Antiplatelet agent	
6	Levocetirizine Dihydrochloride	130018-77-8	00	01	01	Sneezing, itching, watery eyes	
7	GLIMEPIRIDE	93479-97-1	00	0.2	0.2	Anti - Diabatic	
8	Ivermectin	70288-86-7				Onchocerciasis	
9	Isotretinoin	4759-48-2				Treatment of Acne Vulgaris	
10	Tretinoin	302-79-4	00	01	01	To smooth rough facial skin	
11	Betahistine Hydrochloride	5579-84-0				To treat dizziness (vertigo)	
Total			3	10.2	13.2		

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 06/02/2019.
- Salient features of the project are as under:

Sr. no.	Particulars	Details				
Α	Total cost of Proposed Project	Existing: 0.80				
	(Rs. in Crores):	Proposed:3.5				

					Total: 4.	30	
3	Total Plot area				Existing:	1500 Sq. m.	
	(sq. meter)				Propose	d: 00 Sq. m.	
					Total: 15	500.Sq. m.	
	Green belt area				Existing:	300 Sq. m.	
	(sq. meter)				Propose	d: 00.Sq. m.	
					Total: 30	00 Sq. m.	
;	Employment generation	on			Existing:	15	
					Propose	d:20	
		Water					
	Water						
	Source of Water Supply	1			GIDC W	ater Supply	
	(GIDC Bore well, Surface)					
	Status of permission fro		GIDC W	ater Supply			
	Water consumption (K	(LD)					
		Existing	Proposed	Tota	al after	Remarks	
		KLD	(Additional)	Ехра	ansion		
			KLD	KLD)		
				1.2			
	(D) Domestic	0.05	1.15		1.2		
	(D) Domestic (E) Gardening	0.05	1.15 1.00		1.2		
	` ,						
	(E) Gardening						
	(E) Gardening (F) Industrial	0.00	1.00		1.00		
	(E) Gardening (F) Industrial Process	0.00	3.0		4.00		
	(E) Gardening (F) Industrial Process Washing	0.00 1.0 0.05	3.0 0.15		1.00 4.00 0.20		
	(E) Gardening (F) Industrial Process Washing Boiler	0.00 1.0 0.05 0.10	3.0 0.15 8.40		1.00 4.00 0.20 8.50		
	(E) Gardening (F) Industrial Process Washing Boiler Cooling	0.00 1.0 0.05 0.10 0.05	3.0 0.15 8.40 5.45		1.00 4.00 0.20 8.50 5.50		
	(E) Gardening (F) Industrial Process Washing Boiler Cooling Others	0.00 1.0 0.05 0.10 0.05 0.03	3.0 0.15 8.40 5.45 0.47		1.00 4.00 0.20 8.50 5.50 0.50		

	Categ	ory	Existing	Proposed	Total after	Remarks			
			KLD	(Additional)	Expansion				
				KLD	KLD				
	(C) Dome:	stic	0.04	0.96	1.00				
	(D) Industrial Process Washing			l					
			0.72	2.28	3.00				
			0.05	0.15	0.20				
		Boiler	0.01	0.24	0.25				
		Cooling	0.01	0.24	0.25				
		Others	0.03	0.60	0.63				
	Total In	dustrial	0.82	3.51	4.33				
	wast	te water							
iv	Treatment facil	lity within	premises w	ith capacity [F	or existing an	d Proposed]			
	[In-house ETP	(Primary,	Secondary	, Tertiary), ME	E, Stripper, Spra	ay Dryer, STP etc			
	In-house ETP	(Primary	Freatment)	– 4.33 KL/Day					
٧	Mode of Dispos	sal & Fina	al meeting p	oint					
	Domestic:	1.0 K	0 KL/Day domestic wastewater will be disposed through Septic Tank/So						
		Pit.	t.						
	Industrial:	0.67	KL/Day Hi	gh COD strear	n is sent to C	ommon Spray Drye	er of M/s.		
		PETL	., Panoli. 0	Panoli. 0.6 KL/Day RO Permeate is re-used in Boiler. 0.43 KL/Da					
		Sodiu	ım Sulfite (generated from	Scrubber will	be send to end-us	er having		
		perm	ission unde	r Rule-9 .2.63 I	KL/Day Low CC	DD stream is sent to	CETP of		
		M/s. I	PETL, Pand	oli for further tre	atment & dispo	sal.			
vi	In case of Com	nmon facil	ity (CF) like	CETP, Commo	on Spray dryer,	Common MEE, CH	WIF etc.		
	Name of Com	mon facili	ty						
	Common Spra	y Dryer &	CETP of M	/s. PETL, Pand	oli				
	Membership of Common facility (CF)								
	Common Spra	y Dryer &	CETP of M	/s. PETL, Pand	oli				
	Simplified water balance diagram with reuse / recycle of waste water								

	Sr. no.	Sourc emiss Wit Capa e.g. Be (8 TP	ion h city oiler	Stack Height (meter)	Name of the fuel	Quar of F MT/r MT/l	uel ır &	emis i.e	oe of ssions . Air utants	APO	CM	NAAQ (Nation Ambient Qualit Standar	al Air y
	Exis		11)										
	1	Small Industri Boiler (I		18	Wood#	3 MT/[S	PM O2 lox	Cycl Sepa		150 mg/l 262 mg/l 94 mg/l\	اسا ³
	Prop	osed					u.			I			
	1	Small Industri Boiler (I TPH)		18	Briquettes of Bio- Coal	3 MT/[S	PM O2 lox	Cycl Sepa		150 mg/l 262 mg/l 94 mg/N	اm\
	2	Steam Boiler - TPH	1.5	18	Briquettes of Bio- Coal	5 MT/[S	PM O2 lox	Cycl Sepa with filt	rator bag	150 mg/l 262 mg/l 94 mg/l	اسار
	3	Thermo Fluid Ho (1 Lac Kcal/Hr	eater	18	LDO	1 MT/[S	PM O2 lox	Adeq Sta Hei	uate ck	150 mg/l 262 mg/l 94 mg/l	اm\
	4	D.G. Se (125 K\		11	HSD	2! Liter	_	S	PM O2 lox	Adeq Sta Hei	ck	150 mg/l 262 mg/l 94 mg/N	۱m³
	Proce		е. Тур	e of pollut	after propose ant gases (S				NO _x etc	.)			
	-	Sr.	_	Name of t	rce of emiss he Product (cess)		Type emis		Stack Heig	ght	C ₀	Pollution ontrol asures APCM)	
		1			·1 (Chlorinati ydrochloride)		Н	CI	1	1	Wate Scru	er + Alkali bber	
		2	Cetir Interi phen	izine mediates yl)methyl]	2 (Sulphona Dihydrochlo (4-Chloroph piperazine	oride nenyl	SC		1	1	Two Alkal Scru		
i	Fugiti	ive emis	sion	details with	n its mitigatio	n mea	sures						
	Follo	wing me	asure	s will be	adopted to p	orever	nt and	cont	rol fug	itive e	missio	ons	

or providing enclosures.

- 2. Raw materials loading and unloading will be done in covered area
- 3. Care will be taken to store construction material properly to prevent fugitive emissions, if any.
- 4. Regular maintenance of valves, pumps, flanges, joints and other equipment will be done to prevent leakages and thus minimizing the fugitive emissions of VOCs.
- 5. Entire process will be carried out in the closed reactors with proper maintenance of pressure and temperature.
- 6. Periodic monitoring of work area will be carried out to check the fugitive emission.
- 7. To eliminate chances of leakages from glands of pumps, mechanical seal will be provided at all solvent pumps.
- 8. Close feeding system will be provided for centrifuges. Centrifuge and filtrate tank vents will be connected to vent chillers.
- 9. Minimum number of flanges, joints and valves in pipelines.
- 10. Enclosures to chemical storage area, collection of emission from loading of raw materials in particular solvents through hoods and ducts by induced draft, and control by scrubber / dust collector to be ensured.
- 11. Adequate ventilation will be provided.
- 12. Periodic monitoring of work area will be carried out to check the fugitive emission as per the norms of Gujarat Factory Rules.

F Hazardous waste

(as per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

Existing & Proposed

i

Sr.	Type/Name	Specific	Category		Quantity		Management
no.	of	Source of	and	((MT/Annum)	of HW
	Hazardous	generation	Schedule				
	waste	(Name of	as per	Existing	Proposed	Total	-
		the	HW				
		Activity,	Rules.				
		Product					
		etc.)					
1	ETP Sludge	ETP	SCH- I/35.3	0.24	35.76	36.00	Collection, Storage, transportation and Disposal in TSDF

						1	
2	Used Oil	Machineries	SCH-I/5.1	0.06	0.24	0.30	Collection, Storage, transportation and Disposal by selling to registered reprocesser
3	Discarded container/ barrel/ liner/ bags	Raw Materials/ Products	SCH- I/33.1`	2.5	8.5	11.00	Collection, Storage, transportation and Disposal by sale to authorized vendors
4	Distillation Residue	Distillation	SCH- I/20.3	0.18	50	50.18	Collection, Storage,
5.	Spent Carbon	Process (Product No. 3,5)	SCH- I/28.2	0.048	48.00	48.048	transportation and Disposal at co-processing, Cement industries or Common incinerator by M/s. BEIL, Ankleshwar.
6.	Spent Solvent	Process	SCH- I/28.6	0.12	1800	1800.12	Collections, Storage, distill and reuse in plant premises.
7.	Filter material	Filter press	SCH- I/35.1	0.036	0.036	0.072	Collection, Storage, transportation and Disposal at Common incinerator by M/s. BEIL, Ankleshwar.
8.	Inorganic Waste	Process (Product No. 1)	SCH- I/28.1	0.000	60.00	60.00	Collection, Storage, transportation and Disposal in TSDF.
9.	Piperazine Solution (22%)	Process (Product No. 2, 4)	SCH- I/28.1	0.000	100.00	100.00	Collection, Storage, transportation and sell to end user who is having Rule-9 Permission.
10.	NaCL solution	Scrubber	SCH- I/28.1	0.000	12.00	12.00	Collection, Storage and send to ETP for further process.

	Solution (28%)		15				Storage and re- use within premises for the manufacturing of Cetirizine Dihydro chloride Intermediates (Rqd. Qty.: 120
12	Sodium Sulfite (18%)	Scrubber	SCH- I/28.1	0.000	142.00	142.00	MT/Annum). Collection, Storage, transportation
13	· · · ·	Process (Product No. 2, 6, 11)	SCH-II/B- 15	0.000	69.50	69.50	and sell to end user who is having Rule-9 Permission.

ii Membership details of TSDF, CHWIF etc.
(For HW management)

CHWIF.

Details of Non-Hazardous waste & its disposal(MSW and others)

Company will obtain the membership of TSDF, CHWIF.

There is no generation of non – hazardous waste.

G Solvent management, VOC emissions etc.

Types of solvents, Details of Solvent recovery, % recovery. reuse of recovered Solvents

Name of Solvent	Total Input (MT)	Qty. of Recovered Solvent (MT)	Qty. of Losses (MT)	% Recovery	% Losses
Acetone	153	148.85	4.15	97.29	2.71
Acetonitrile	1516	1477.19	38.81	97.44	2.56
Ethyl Acetate	63	61.16	1.84	97.08	2.92
Hexane	1164	1135.37	28.63	97.54	2.46
MCB	1137	1104.25	32.75	97.12	2.88
Methanol	1800	1745.46	54.54	96.97	3.03
Methylene dichloride	271	264.12	6.88	97.46	2.54
Toluene	60	58.22	1.78	97.03	2.97

ii **VOC emission** sources and its mitigation measures

During operation stage, leakage through valves/pumps, leakage and emission from open drum containing chemicals, open feeding, storage tanks, etc. will be major sources of fugitive emissions and VOCs. Excess use of solvent/s may also results fugitive emission from the process vessels.

- Solid raw material charging will be done through closed system.
- Entire process will be carried out in the closed reactors with proper maintenance of pressure and temperature.
- Close feeding system will be provided for centrifuges. Centrifuge and filtrate tank vents will be connected to vent chillers.
- Fugitive emission over reactors, formulation areas, centrifuges, chemical loading, transfer area, will be collected through hoods and ducts by induced draft and controlled by

scrubber/dust collector.

- Emphasis will be given to solvent management/solvent loss prevention.
- Control by having proper scrubbing system.
- Condenser to trap VOC.
- Enclosures to chemical storage area, collection of emission from loading of raw materials in particular solvents through hoods and ducts by induced draft, and control by scrubber/dust collector to be ensured.
- Proper maintenance schedule will be adhered to avoid emissions through flange joints, pump seals etc.
- Minimum number of flanges, joints and valves in pipelines.
- Proper gland packing will be maintained for pumps and valves and to the extent possible pumps with mechanical seal.
- All the raw materials will be pneumatically transfer to the reactor.
- All rotating equipments like pumps will be installed with mechanical seals to arrest any sort of emissions.
- A regular preventive maintenance schedule will be in place to replace or rectify all gaskets and joints etc. as a part of ISO systems to ensure no fugitive emissions take place.
- Periodic monitoring of work area will be carried out to check the fugitive emission.
- Solvent tank vents will be connected to vent chillers.
- Adequate ventilation will be provided.
- Airborne dust at all transfers operations/ points will be controlled either by spraying water or providing enclosures.
- During the meeting dated 06/02/2019, technical presentation made by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report, and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period March to May' 2017. Ambient Air for PM10,PM2.5,SO2, Quality monitoring was carried out NOx,O₃,Pb,NH₃,CO,C6H6, BaP(ng/m³),As,Ni,Hcl,Cl₂, HBr, HC and VOC at Nine locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using ISCST - 3 model. The results of AAQM are within the norms prescribed in NAAQS. The Value of PM₁₀ is higher in Panoli Region due to location near GIDC Estate Area & For Kosamdi & Jitali, The Value of PM₁₀ is higher due to excess vehicle moment. The resultant concentrations are within the NAAQS. The modeling study proved that the air emissions from the proposed plant would

- not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios
 has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency
 Plan has been covered in the RA report.
- This unit having EC and CCA for existing synthetic organic chemical products. They have valid CC&A for
 existing unit. Copy of EC and CC&A, its compliance report is submitted. PP ensured that there are no court
 cases pending and no public complaints against the project.
- The proposal is for expansion. Unit has valid EC, CCA and compliance of EC conditions were deliberated at length. This is an existing unit engaged in organic chemicals and now proposes for new synthetic organic chemical products. Committee asked about EC conditions compliance verification report of RO, Bhopal, PP informed that except two conditions all other EC conditions are complied. Committee asked about non compliance of EC conditions, PP not satisfactorily addressed about green belt not provided in existing plant hence committee asked PP to come with concrete work regarding green belt development in plant.

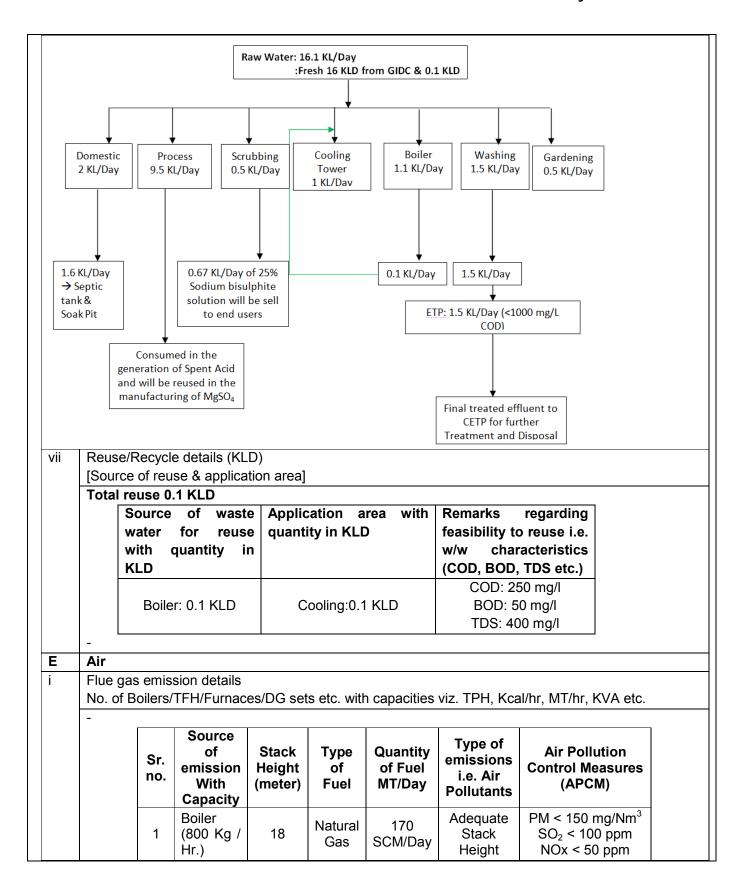
After deliberation, SEAC unanimously decided to defer the proposal and proposal will be considered for appraisal after satisfactory submission of the above.

10.	SIA/GJ/IND2/27855/2018	M/s: Balaji Industries	Appraisal
		Plot No. 2525 & 2526, Chemical	
		Zone, GIDC, Sarigam, Umargam,	
		Valsad	

Category of the unit: 5(f)
Project status: Expansion

- Project proponent (PP) has submitted online application vide no. SIA/GJ/IND2/27855/2018 dated **16/01/2019** for obtaining Environmental Clearance.
- SEIAA issued TOR to PP vide letter SEIAA/GUJ/TOR/5(f)/1143/2018 dated 23/08/2018.
- Project proponent has submitted EIA Report prepared by M/s: Aqua Air Environmental Engineering Pvt.
 Ltd based on the TOR issued by SEIAA
- This is an existing unit engaged in in-organic chemicals and now proposes for expansion of synthetic organic chemicals as tabulated below:

Sr.	Name of the Products		Quantity MT/Month			End-use of the products	
no.	Products	CI no.	Existing	Proposed	Total		
1	Ferrous Sulphate		250	-250	0		
1	Aniline 2-5 DiSulfonic Acid	98-44- 2		20 Mt/Month	20 Mt/Month	Intermediate for Dye Stuffs (Direct Dyes), Intermediate for Optical Brightening Agent, Acid Film orange P, Pigment Saturn Yellow 5 GL,	


							Printing Board eaux 'B',In Manufacturing of Mordent Azaol
:	2	Metanilic Acid	121- 14-1		80 Mt/Month	80 Mt/Month	Raw material for dyes, Intermediate for Optical Brightening Agent, Raw Material for DEMAP & Meta Amino Phenol.
;	3	Magnesium Sulphate	7487- 88-9		60 Mt/Month	60 Mt/Month	In Mfg of Cattle Feed
		Total	250	-90	160		

Note: Existing Production Ferrous Sulphate will be discontinue after getting EC & CTE.

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 06/02/2019.
- Salient features of the project are as under:

Sr.	Particulars		Details			
no.	Total cost of Project (Rs. in Crores):	Proposed	2.4 Crore	es		
В	Total Plot area		1700 Sq	. m.		
	(sq. meter)					
	Green belt area		597 Sq.	m.		
	(sq. meter)					
С	Employment ger	neration	30			
D	Water					
i	Source of Water S (GIDC Bore well, water, Tanker sup	Surface	GIDC wa	ater supply		
	Status of permiss concern authority		Unit has	obtained permission	on for required quanti	ty of water.
ii	Water consumpt	tion (KLD)				
		Category		KLD	Remarks	
		(G) Dome		2		
		(H) Garde		0.5		
		(I) Indus		0.5		
			Process Washing	9.5 1.5		
		'	Boiler	1.1		
			Cooling	1		
		Others (Se		0.5		
			rial Total	13.6		
		Total (A		16.1		
		•	•	project: 16.1 KLD		
		be recycled:		141 D		
L	,	h water require		KLD		
iii	Waste water gen	<u> </u>		10.		
		Catego	ry	Waste water	Remarks	

				KLD		
		(E) Domestic		1.6		
		(F) Industrial				
		Proc	ess	0		
		Wash		1.5		
		Во	iler	0.1	Reuse in cooling Tower	
		Cool	ling	0]
		Others (Scrubbi	ing)	0.67	Sell to end users]
		Total Industrial wa	aste ater	2.27		
		Total [A +	+ B]	3.87]
iv	Treatment fa	acility within premises	with	capacity		
	[In-house E	TP (Primary, Seconda	ry, Te	ertiary), MEE, Strippe	r, Spray Dryer, STP etc	
	ETP consist	of primary treatment:	2 KL	D		
٧		posal & Final meeting				
	Domestic:	1	.6 KI	LD of Domestic Wast	ewater will be disposed throu	ugh Soak pit
				otic Tank.		5
	Industrial:				aving <1000 mg/L COD will b	
	industrial.				d then treated effluent will be	
					n Clean Initiative, Sarigam fo	
				reatment and dispose		Tartifor
				•	low down will be reuse in cod	olina tower.
					of sodium bisulphate solution	
				to end users.	•	
vi	In case of C	common facility (CF) like	ke CE	TP, Common Spray	dryer, Common MEE, CHWII	F etc.
		ommon facility				
		s. Sarigam Clean Initia	ative	Sarigam.		
		o of Common facility (C				
		water treatment)	,			
	`	•	f Mer	mbership of CETP of	M/s. Sarigam Clean Initiative	Sarigam
vii		water balance diagra		•		, cangain.
VII	Simplified	water barance uragra	4111 VV	ini reuse / recycle 0	ı wasıc walcı	

			I	1								
		2	DG Set	9	HSD	10 Liter/I						
	_											
ii	Proce	ss gas i.	e. Type	of pollutant ga	ses (SO ₂	HCI, N	H _{3,} C	I _{2,} NO _x eta	c.)			
	-		Sr.	Source o		pe of ission	Н	ck/Vent eight neter)	M	Pollution Control leasures (APCM)		
			1	Reaction Vessel (Sulphonati	me	₂ < 40 g/Nm ³		11	Alka	Stage ali ubber		
iii	Fugiti	ve emis	sion det	ails with its m	itigation r	neasure	es.					
		_		will be adopte	•			_	•			
	1.			t all transfers	operation	ıs/ point	s will	be contr	olled	l either by s	praying	water or
	2	•	ng enclo	sures. en to store co	netruction	n mater	ial nr	onerly to	nrev	ent fugitive	<u>Amieeir</u>	one if any
				nance of valve			•		•	•		
		•		es and thus m								
	4.	Entire	process	will be carried	out in the	e closed	d reac	ctors with	prop	per mainten	ance of	pressure
			mperatur									
				ring of work a				to check	the	fugitive emi	ission.	
				will be provid								
				nts will be cor								
	8.		ninate ch ent pum	ances of leak	ages fron	n giands	s or p	umps, me	ecna	ınıcaı seai w	ılı be pı	ovided at
	q		•	ystem will be	nrovided	for cen	trifua	es Centr	ifuae	and filtrate	tank v	ents will he
	0.			ent chillers.	provided	101 0011	unag	co. ocna	nage	o and milate	, tariit v	Sinto Will be
	10			er of flanges,	joints and	d valves	in pi	ipelines.				
				hemical stora	-			•	from	n loading of	raw ma	aterials in
		particu	lar solve	nts through ho	ods and	ducts b	y ind	uced dra	ft, an	nd control by	scrubb	per / dust
		collecte	or to be	ensured.								
	12	_		eting will be pr		esides	speci	ial care n	eeds	to be taker	n for co	ntrol in
		•		ous chemicals	S.							
F		dous w er the Ha		and Other Wa	astes (Ma	nagem	ent ai	nd Transl	houn	ndary Mover	nent) R	Rules 2016
i	(as pe			J. 14 C 11 O 1 1 V C	Cate		J a					
	Sr. no.	Type/ o Hazar wa:	of rdous	Source of generation	an Sched per l Rul	d ule as HW		uantity 7/Annum)	D	isposal Me	thod	
	1	Discard HDPE Drums/		Process & Raw material Handling	Sched (33		10	000 Nos	St Ti ar Ro	ollection, torage, ransportation nd sell egister ven ter	to	

						decontamination.
	2	Used / Spent Oil	Machinery and Equipment	Schedule-I- (5.1)	20 LTR	Collection, Storage, Transportation and sell to registered recycler.
	3	ETP Sludge	ETP	Schedule-I- (35.3)	0.2	Collection, Storage, Transportation and sent to common TSDF.
	4	Iron Sludge	Process (Metanilic Acid)	Schedule-I- (26.1)	960	Collection, Storage, Transportation and sent to Cement Industries or Common TSDF.
	5	Process Waste	Process (Magnesium Sulphate)	Schedule-I- (26.1)	90	Collection, Storage, Transportation and sent to Common TSDF.
	6	Gypsum	Process (Metanilic Acid)	Schedule-I- (26.1)	1200	Collection, Storage, Transportation and sent to Cement Industries or Common TSDF.
	7	25% of Sodium bisulphite	Scrubber (Aniline 2,5 Disulfonic Acid)	Schedule-II- (B-36)	240	Collection, Storage, Transportation and sell to end users having rule 9 permission.
	8	Spent Sulfuric Acid (30%)	Process	Schedule-I- (26.3)	3560	Collection, Storage, Transportation and 3600 MT will be Reused in Mfg of MgSO ₄ .
ii	CHW	pership details of IF etc. HW managemer	·	t have obtained i	membership o	f Common TSDF of M/s. SEPP
iii		s of Non-Hazard & & its disposal(M s)		non hazardous v	vaste will be g	enerated.
G		ent managemen				
İ	Types	s of solvents, De	ails of Solvent	recovery, % rec	overy. reuse o	of recovered Solvents

	NA. No Solvent will be used.
ii	VOC emission sources and its mitigation measures
	NA. Company will not use any solvent. So, VOC will not be generated.

- During the meeting dated 06/02/2019, technical presentation made by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report, and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period March to May, 2017. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx,O3,Pb,NH3,CO,C6H6,As,Ni and VOC at Nine locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using ISCST. The resultant concentrations are within the NAAQS. The modeling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios
 has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency
 Plan has been covered in the RA report.
- This unit is having valid CC&A for existing unit. Copy of CC&A, its compliance report is submitted. PP ensured that there are no court cases pending and no public complaints against the project.
- The proposal is for expansion. Unit has valid CCA and compliance of CCA conditions were deliberated at length. This is an existing unit engaged in mfg of inorganic chemicals and now proposes for new synthetic organic chemical products.PP informed that no legal action taken against unit. After expansion, industrial effluent will be treated in ETP consist of primary treatment & then it will be sent to CETP of Sarigam. Committee asked about compliance of CETP and PP informed that CETP is in compliance. Also PP represented about area adequacy of proposed plant and production activity carried out in closed shed. PP also informed that unit will discontinue existing ferrous sulphate production after getting EC and CTE for existing product. Committee asked about spent acid management, PP addressed that unit shall manufacture magnesium sulphate product from spent acid. PP informed that Natural gas is proposed as fuel for proposed project expansion. Two stage alkali scrubber will be provided with proposed reactor. Considering hazardous waste generation, PP has satisfactorily addressed hazardous waste management including generation and disposal of spent sulphuric acid. Committee deliberated all the TOR in detail with details of baseline data, GLC of PM10, PM2.5, SO2, NOx,O3,Pb,NH3,CO,C6H6,As,Ni and VOC impact on surface water and ground water quality and Noise, EMP, CER with details of budgetary provisions.

Compliance of the ToR was found satisfactory.

After detailed discussion, it was decided to recommend the project to SEIAA Gujarat for grant of Environmental Clearance.

11.	SIA/GJ/IND2/30662/2018	M/s: Iconic Pharmachem	Appraisal
		Plot No. 3202, Phase-III, GIDC	
		Estate, Panoli, Ankleshwar,	
		Bharuch	

Category of the unit: 5(f)

Project status: New

- Project proponent (PP) has submitted online application vide no. SIA/GJ/IND2/30662/2018 dated 16/01/2019 for obtaining Environmental Clearance.
- SEIAA issued TOR to PP vide letter SEIAA/GUJ/TOR/5(f)/1370/2018 dated 18/12/2018.
- Project proponent has submitted EIA Report prepared by M/s: Aqua-Air Environmental Engineers Pvt. Ltd based on the TOR issued by SEIAA
- This is a new unit proposes manufacturing of synthetic organic chemicals as tabulated below:

	PRODUCTS	CAS NO.	Production (Capacity (MT/MONTH)
NO.			TOTAL	END USE
1	Diclofenac Sodium Derivatives	15307-79-6	30.0	Anti-inflammatory drug
2	Diclofenac Potassium	15307-81-0		Anti-inflammatory drug
3	Aceclofenac	89796-99-6		Anti-inflammatory drug
4	Citrizine Dihydrochloride	83881-52-1		Anti Histamine
5	Levocitrizine Dihydrochloride	130018-77- 8		Anti Histamine
6	Meclizine Hydrochloride	31884-77-2	1	Anti Histamine
7	Cilnidipine	132203-70- 4		Anti Hypertension
8	Azelinidipene	123524-52- 7		Anti Hypertension
9	Nifidipine	21829-25-4		Anti Hypertension
10	Pregabaline	148553-50- 8		Anti-Epileptic
	RCMH(R(-)-3-(Carbamoylmethyl)-5-methyl hexanoic acid)	181289-33- 8		Intermediate of Pregabaline
12	Glimepiride	93479-97-1		Anti Diabetic
13	Gadopententic Acid	80529-93-7		As a paramagnetic agents
14	Mannich Hydrochloride	42036-65-7		Intermediate of Tramadol

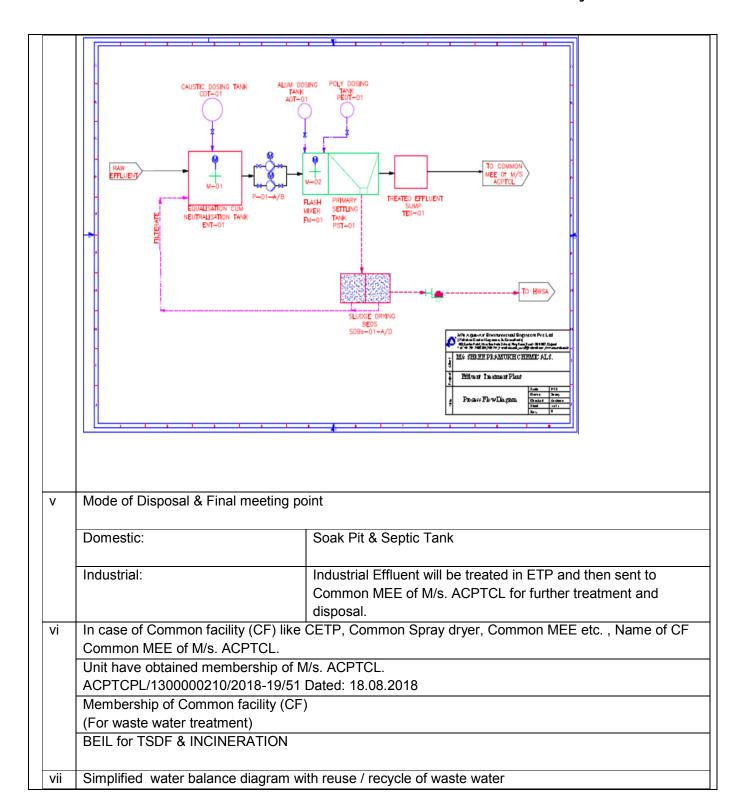
15	Ambroxol HCL	23828-92-4		Respiratory Diseases
16	Rosuvastatin Calcium	147098-20- 2		Lipid Lowering
17	Desloratadine	100643-71- 8		Anti Histamine
18	Levetiracetam	102767-28- 2		Anti Epileptic
19	Telmisarton	144701-48- 4		Anti Hypertension
20	Indolinone	15307-86-5		Intermediate of Diclofenac sodium
21	N-Chalroacetyl 2,6 Dichlrodiphenyl Amine	15308-01-7		Intermediate of Diclofenac sodium
22	2,6 Dichlrodiphenyl Amine	15307-93-4		Intermediate of Diclofenac sodium
Tot	al		30 MT/MONTH	

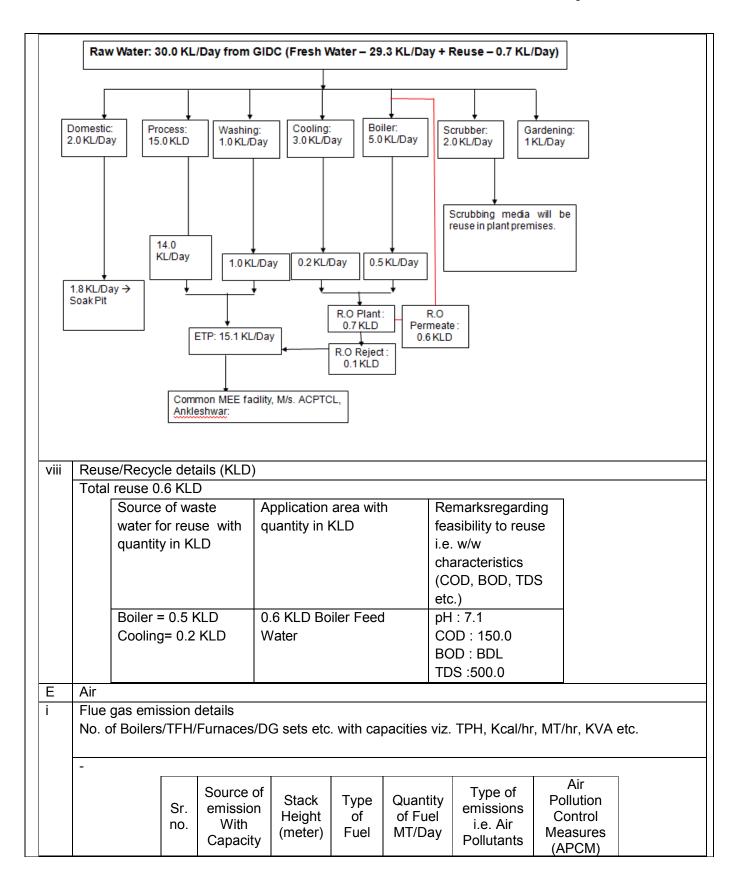
- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 06/02/2019.
- Salient features of the project are as under:

Sr.	Particulars		Deta	ails		
Α	Total cost of Propo (Rs. in Crores):	osed Project	3.0	Crores		
В	Total Plot area(so	ı. meter)	150	0.0 Sq. m.		
	Green belt area (sq. meter)		495	.0 Sq. m.		
С	Employment gene	ration	_	ct-15 rect-15		
D	Water					
i	Source of Water S	Supply	GID	C Water Supply		
	(GIDC Bore well, S Tanker supply etc					
	Status of permissi concern authority.		Unit	has obtained perm	ission for water supply.	
ii	Water consumptio	n (KLD)				
		Category		Quantity KLD	Remarks	
		(J) Domestic		2.0		

		(K) Gardening	2.0		
		(L) Industrial			
		Process	15.0		
		Washing	1.0		
		Boiler	5.0		
		Cooling	3.0		
		Others/Scrubber	2.0		
		Industrial Total	26.0		
		Total (A + B + C)	30.0		
iii	12) Total tresh	n water requirement: 29.3 eration (KLD)	3 KLD		
		Category	Waste water	Remarks	
		(G) Domestic	1.8	Septic tank or Soak pit	
		(H) Industrial		system.	
		Process	14.0		
		Washing	1.0		
		Boiler	0.5	R. O plant & 0.6 KLD Reuse In Boiler Feed	
		Cooling	0.2	Water (R.O Reject 0.1 KLD Common MEE)	
		*Scrubber/Others	2.2	Reuse in plant premises.	
		Total Industrial waste water	15.1	Common MEE of M/s. ACPTCL, Ankleshwar	
	_	Total [A + B]	17.9 KL/Day		J
iv	Treatment facility	within premises with cap	pacity		
	-			per, Spray Dryer, STP etc	
	ETP : 20.0 KL/Da		·		
				ent plant consisting of prir	mary & secondary
	treatment units. T	he details of ETP are as	follows.		
	First all stroams	of wastewater shall be	a collected in 5	Equalization cum Neutraliz	zation tank (ENIT
	I HOL AH SUEAHIS	oi wasiewatei Siidii De	conected III E	-quanzanon cum Neutfall	∠au∪ii talik (⊏INI-

01)where the continuous addition and stirring of Caustic solution is done to maintain neutral pH of wastewater from Caustic Dosing Tank (CDT-01) as per requirement by gravity. Mixer is provided in the ENT-01 to keep all suspended solids in suspension and for proper mixing.


Then, neutralized wastewater shall be pump to Flash Mixer (FM-01) where Alum and Polyelectrolyte shall be dosed from Alum Dosing Tank (ADT-01) and Polyelectrolyte Dosing Tank (PEDT-01) respectively by gravity. Then it will go into PST-01 where solids are allowed to settle and Clear supernatant from PST-01 shall be collected in Treated Effluent Sump (TES-01) before sent to Common MEE of M/s Ankleshwar Cleaner Production Tech. Center Ltd (ACPTCL) for further treatment.


Sludge settled in PST-01 shall be collected in Sludge Drying Beds (SDBs-01-A/D) where, dewatering shall be carried out before storage in HWSA and ultimate disposal to TSDF.

SIZE OF TANKS

S.N.	Name Of Unit	Size (M X M X M)	No.	Moc/ Remark
1	Equalization Cum Neutralization Tank (Ent- 01)	4.0 M X 2.0 M (2.5 M+0.5 Fb)	1	Rcc M30+A/A Bk. Lining
2	Flash Mixer (Fm-01)	0.7 M X 0.7 M (1.5 M+0.3 Fb)	1	Rcc M30
3	Primary Settling Tank (Pst-01)	1.5 M X 1.0 M (1.8 M + 0.5 Fb)	1	Rcc M30
4	Treated Effluent Sump (Tes-01)	4.0 M X 2.0 M (2.5 M+0.5 Fb)	1	Rcc M30
5	Sludge Drying Beds (Sdbs-01-A/B)	3.0 M X 2.0 M	2	Bk. Maso. With Rcc Bedding
6	Caustic Dosing Tank (Cdt-01)	500 Lit	1	Hdpe
7	Alum Dosing Tank (Adt-01)	500 Lit	1	Hdpe
8	Poly Dosing Tank (Pedt-01)	250 Lit	1	Hdpe

Flow Diagram of Effluent Treatment Plant:

1 Boiler (1000 Mag/hr.) Solution Region Regio
kg/hr.) TFH (2
TFH (2 30 m Agro waste MT/day
Independent of the product & Process Proce
Independent of the product & Process Proce
ii Process gas i.e. Type of pollutant gases (SO ₂ , HCI, NH ₃ , Cl ₂ , NO _x etc.) Specific Source of emission (Name of the Product & Process) Process Hcl < 20
ii Process gas i.e. Type of pollutant gases (SO ₂ , HCl, NH ₃ , Cl ₂ , NO _x etc.)
ii Process gas i.e. Type of pollutant gases (SO ₂ , HCI, NH ₃ , Cl ₂ , NO _x etc.)
ii Process gas i.e. Type of pollutant gases (SO ₂ , HCl, NH ₃ , Cl ₂ , NO _x etc.) - Specific Source of emission (Name of the Product & Process) - Process Hcl < 20
ii Process gas i.e. Type of pollutant gases (SO ₂ , HCI, NH ₃ , Cl ₂ , NO _x etc.)
ii Process gas i.e. Type of pollutant gases (SO ₂ , HCl, NH ₃ , Cl ₂ , NO _x etc.)
ii Process gas i.e. Type of pollutant gases (SO ₂ , HCl, NH ₃ , Cl ₂ , NO _x etc.)
Specific Source of emission (Name of the Product & Process) Process 1 Vent*-1 Mg/Nm³ Scrubber Process 2 Vent*-2 175.0 Mg/Nm³ Scrubber Fugitive emission details with its mitigation measures. As below: Following measures will be adopted to prevent and control fugitive emissions
Specific Source of emission (Name of the Product & Process) Process 1 Vent*-1 Mg/Nm³ Scrubber Process 2 Vent*-2 175.0 Mg/Nm³ Scrubber Fugitive emission details with its mitigation measures. As below: Following measures will be adopted to prevent and control fugitive emissions
Specific Source of emission (Name of the Product & Process) Process 1 Vent*-1 Mg/Nm³ Scrubber Process 2 Vent*-2 175.0 Mg/Nm³ Scrubber Full time to the Process 175.0 Mg/Nm³ Two Stage Scrubber Following measures will be adopted to prevent and control fugitive emissions
Specific Source of emission (Name of the Product & Process) 1 Process 1 Vent*-1 Mg/Nm³ Two Stage Scrubber Process 2 Vent*-2 Ng/Nm³ Thm Two Stage Scrubber Following measures will be adopted to prevent and control fugitive emissions
Source of emission (Name of the Product & Process) Process Vent*-1 Mg/Nm³ Two Stage Scrubber Process Vent*-2 175.0 Mg/Nm³ Two Stage Scrubber Fugitive emission details with its mitigation measures. As below: Following measures will be adopted to prevent and control fugitive emissions
iii Fugitive emission details with its mitigation measures. As below: Sr. (Name of the Product & Process) Process Hcl < 20 11m Two Stage Scrubber Process Nh3 < 11m Two Stage Scrubber Process Nh3 < 175.0 Scrubber Iii Fugitive emission details with its mitigation measures. As below: Following measures will be adopted to prevent and control fugitive emissions
iii Fugitive emission details with its mitigation measures. As below: Sr. (Name of the Product & Product & Product & Process) Process Hcl < 20
iii Fugitive emission details with its mitigation measures. As below: Toology
Product & Process) Process Hcl < 20 11m Two Stage Scrubber Process Nh3 < 11m Two Stage Scrubber Process Nh3 < 11m Two Stage Scrubber Vent*-2 175.0 Scrubber Fugitive emission details with its mitigation measures. As below: Following measures will be adopted to prevent and control fugitive emissions
Process Hcl < 20
1 Vent*-1 Mg/Nm³ Scrubber Process Nh3 < 11m Two Stage Scrubber Vent*-2 Mg/Nm³ Scrubber iii Fugitive emission details with its mitigation measures. As below: Following measures will be adopted to prevent and control fugitive emissions
Process Nh3 < 11m Two Stage Scrubber Vent*-2 175.0 Mg/Nm³ iii Fugitive emission details with its mitigation measures. As below: Following measures will be adopted to prevent and control fugitive emissions
Process Nh3 < 11m Two Stage Scrubber Vent*-2 175.0 Mg/Nm³ Fugitive emission details with its mitigation measures. As below: Following measures will be adopted to prevent and control fugitive emissions
2 Vent*-2 175.0 Scrubber iii Fugitive emission details with its mitigation measures. As below: Following measures will be adopted to prevent and control fugitive emissions
iii Fugitive emission details with its mitigation measures. As below: Following measures will be adopted to prevent and control fugitive emissions
- iii Fugitive emission details with its mitigation measures. As below: Following measures will be adopted to prevent and control fugitive emissions
As below: Following measures will be adopted to prevent and control fugitive emissions
As below: Following measures will be adopted to prevent and control fugitive emissions
As below: Following measures will be adopted to prevent and control fugitive emissions
Following measures will be adopted to prevent and control fugitive emissions
1. Airborne dust at all transfers operations/ points will be controlled either by spraying water or
providing enclosures.
2. Care will be taken to store construction material properly to prevent fugitive emissions, if any.
3. Regular maintenance of valves, pumps, flanges, joints and other equipment will be done to
prevent leakages and thus minimizing the fugitive emissions of VOCs.
4. Entire process will be carried out in the closed reactors with proper maintenance of pressure
and temperature.
Periodic monitoring of work area will be carried out to check the fugitive emission.
6. Breather valves will be provided on solvent tanks.
7. Solvent tank vents will be connected to vent chillers.
8. To eliminate chances of leakages from glands of pumps, mechanical seal will be provided at
all solvent pumps.
9. Close feeding system will be provided for centrifuges. Centrifuge and filtrate tank vents will be
connected to vent chillers.
10. Minimum number of flanges, joints and valves in pipelines.

11. Enclosures to chemical storage area, collection of emission from loading of raw materials in particular solvents through hoods and ducts by induced draft, and control by scrubber / dust collector to be ensured.

Nitrogen blanketing will be provided, besides special care needs to be taken for control in respect of odorous chemicals.

F Hazardous wastes

(as per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

I		

Sr.	Type/Name of	Specific Source of	Category	Quantity (MT/Annum)	Management of HW	
110.	Hazardous waste	generation (Name of the Activity, Product etc.)	Schedule as per HW Rules.	(WII/AIIIuIII)		
1	ETP Sludge	ETP	Sch-I/35.3	2 MT/Month	Collection, Storage, Transportation And Dispose To Tsdf Site.	
2	Discarded Drums /Containers	Raw Material	Sch-I/33.1	150 Nos/Month	Collection, Storage, Transportation, Decontamination &	
3	Discarded Liner/Bag	Raw Material	Sch-I/33.1	600 Nos./Month	Disposal By Selling To Registered Recycler	
4	Used Oil	Plant machinery	Sch-I/5.1	240 Liters/Annum	Collection, Storage, Transportation, Disposal By Selling To Registered Recycler Or Re- Use As Lubricant	
5	Organic Waste	From Mfg. Of Rosuvastatin Calcium	Sch-I/28.1	3.3 MT/Month	Collection, Storage, Transportation And Dispose To Co- Processing In Cement Industries Or Common Incineration Site	
6	Sulphuric Acid (70 To 80 %)	From Mfg. Of Cetrizine, Levocetrizine, Pregabaline, Rcmh,	Sch-I/28.1	796.5 MT/Month	Collection, Storage, Transportation And Sell To End User having permission under Rule-9	
7	Spent Carbon	From Mfg. Process Of	Sch-I/28.3	5.0 MT/Month	Collection, Storage, Transportation And	

			Pregabaline			Dispose To Co- Processing In Cement Industries Or Common Incineration Site.	
	8	Inorganic Waste	From Mfg. Process Of Glimipride	Sch-I/28.1	6.3 MT/Month	Collection, Storage, Transportation And Dispose To Common TSDF Site	
	9	Spent Solvents	From Mfg. Process	Sch-I/28.6	550 MT/Month	Collection, Storage, Recovered Through In House Distillation Or Sent For Distillation Job Work To Authorized Recycler Then Reuse In Process	
	10	Distillation Residue	From Solvent Recovery Plan	Sch-I/28.1	5.5 MT/Month	Collection, Storage, Transportation And Dispose To Co- Processing In Cement Industries Or Common Incineration Site	
	11	Dil. HCL (30 %)	From Scrubber	Sch-II/B15	32.5 MT/Month	Collection, Storage, Transportation And Reuse in Cetirizine Dihydrochloride (Require Quantity of HCL (30%) – 90 MT/Month).	
	12	Liq. Ammonia (25 %)	From Scrubber	Sch-I/28.1	31.25 MT/Month	Collection, Storage, Transportation And Reuse in Levetiracetam (Require Quantity of liq.Ammonia (25%) – 54.3 MT/Month).	
ii	- Membership details of TSDF, CHWIF etc. (For HW management)		Membership Certificate of Common TSDF, Incineration SITE				
iii	Detai		rdous waste &	No non hazardous waste will be generated.			

(MSW and others)

G Solvent management, VOC emissions etc.

Types of solvents, Details of Solvent recovery, % recovery. reuse of recovered Solvents

Details of Solvent recovery

Atmospheric Distillation of Solvents:

Primary Condenser HE-01: Cooling Tower water will be used to condense the solvents and the non condensed vapors will be condensed in a Secondary Condenser.

Secondary Condenser HE-02: Chilled water at 6 $^{\circ}$ C will be used to condense the non condensed vapors in the Secondary Condenser.

VOC Trap Condenser HE-03: Chilled Brine at -35 $^{\circ}$ C will be used to trap any traces of Solvent which is slipped from Secondary condenser.

Vacuum distillation of Solvent:

Primary Condenser HE-01: Cooling Tower water or Chilled water will be used to condense the solvents depend on the vapor pressure at its operating conditions and the non condensed vapors will be condensed in a Secondary Condenser.

Secondary Condenser HE-02: Chilled Brine at -17 $^{\circ}$ C will be used to condense the non condensed vapors in the Secondary Condenser.

VOC Trap Condenser HE-03: Chilled Brine at -35 °C will be used to trap any traces of Solvent which is slipped from Secondary condenser.

97.00 % of Spent Solvent will be recovered by In-house distillation of Solvent.

ii VOC emission sources and its mitigation measures

- All the solvents are directly distillate from product mix and purified in packed column with the help of reflux and therefore there is no generation of any distillation residue from the solvent distillation.
- The solvent distillation system is designed so as to achieve minimum 95% recovery of solvent.
- Pure solvent, crude solvent and distilled (recovered) solvent shall be stored only in storage tanks and we shall not be using drums at any stage in the Solvent Management System.
- Wherever required, the solvents shall be directly pumped into day tanks from the storage tanks and shall be charged into the reactors without involving any manual handling.
- All the pumps shall be mechanical seal type to avoid any leakage of solvent.
- All necessary fire fighting systems shall be provided with alarm system. Flame proof wiring and flame proof electrical accessories shall be provided to avoid any mishap.
- All the storage tank and day tank shall be connected to a vent system through chilled water condensers to prevent loss of solvents in the atmosphere.

All the distillation column vents are also connected to chilled water condensers for maximum possible recovery of the solvents.

Name of Solvent	B.P	V.P	Before LDAR		After LDAR	
			% Recovery	% Loss	% Recovery	% Loss
Acetone	56.2Ÿ C	24 kpa	95.0	5.0	97.3	2.7
Chloroform	61.0Ÿ C	21.1 kpa	95.2	4.8	97.2	2.8
Methanol	64.6	13.02 kpa	95.4	4.6	97.3	2.7

Toluene	111.0	760 mm hg	92.1	7.9	97.0	3.0
IPA	82	44hpa	92.5	7.5	97.0	3.0
Acetonitrile	82	97hpa	94.2	5.8	96.3	3.7
Ethyl Acetate	75	103mbar	92.4	7.6	97.0	3
n-hexane	69	160mbar	92.7	7.3	97.1	2.9

- During the meeting dated 06/02/2019, technical presentation made by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report, and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period March 2017 to May 2017. Ambient Air Quality monitoring was carried out for PM10,PM2.5,SO2, NOx,O₃,Pb,NH₃,CO,C6H6,As,Ni,Hcl,HC and VOC at Nine locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using ISCST – 3 model. The resultant concentrations are within the NAAQS. The modeling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios
 has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency
 Plan has been covered in the RA report.
- This unit is new synthetic organic chemical product unit.
- The proposal is for new bulk drug unit. PP informed that Diclofenac product partly captive used for Aceclofenac product and partly selling as bulk drug product. Committee asked about banned chemicals manufacturing, PP informed that no banned bulk drug products proposed by them. Committee asked about worst case scenario for proposed product, PP satisfactorily addressed about it. PP informed that effluent from process will be treated in primary ETP and then sent to common MEE of M/s ACPTCL, Ankleshwar and boiler and cooling blow down will be treated in RO plant and RO permeate reused while RO reject will be sent to common MEE of M/s ACPTCL, Ankleshwar. Committee asked about spent aluminium chloride generation from proposed product, PP informed that spent aluminium chloride generated is utilized for KCl manufacturing which is used as raw material for proposed bulk drugs. PP informed about spent HCl generated from Diclofenac product is utilized for Cetrizine product within premises. PP satisfactorily addressed about hazardous waste management specifically spent solvent. Committee insisted for solvent will be stored in drums as per PESO standard. Also PP represented about area adequacy of proposed plant and production activity carried out in closed shed. Upon asking about raw effluent quality, PP ensured about inlet norms will be achieved before sending to common MEE. Agro waste is proposed as

fuel for proposed project. Cyclone and Bag filter will be provided with proposed boiler and thermo pack. Two stage scrubber will be provided with each process stack. Considering hazardous waste generation, PP has satisfactorily addressed hazardous waste management including generation and disposal of bleed liquor. Committee deliberated all the TOR in detail with details of baseline data, GLC of PM10,PM2.5,SO2, NOx,O₃,Pb,NH₃,CO,C6H6,As,Ni,Hcl,HC and VOC, Impact on surface water and ground water quality and Noise, EMP, CER with details of budgetary provisions.

Compliance of the ToR was found satisfactory.

After detailed discussion, it was decided to recommend the project to SEIAA Gujarat for grant of Environmental Clearance with following specific condition:

1. Unit shall provide solvent drum storage area as per PESO standards.

12.	SIA/GJ/IND2/21961/2017	M/s: Aarti Industries Limited	Reconsideration EC,
		(Organic Division)	Refer back case
		Plot No.801, 801/23, 806 & 807,	
		Phase-III, GIDC Estate, Pardi,	
		Vapi, Dist-Valsad	

Category of the unit: 5(f)
Project status: Expansion

- M/s. Aarti Industries Limited (Organic Division) applied for environmental clearance and the SEAC recommended the project for grant of environmental clearance vide this office letter no.EIA-10-2017-IND2/412/2876 dated 24/09/2018 for setting up of new manufacturing plant of 'Synthetic Organic Chemicals' as mentioned therein:
- The case was referred back by the SEIAA, Gujarat vide letter no. SEIAA/GUJ/EC/5(f)/1070/2018 dated 05/10/2018 with the following point:
 - 1. To verify the details of generation and management of spent acid.
 - 2. To verify the details of generation and management of Distillation residue.
 - 3. To verify the details of study area with respect to the TOR accorded.
- Project proponent submitted reply vide their letter dated 22/12/2018 for the above mentioned points.
- PP has submitted as under:
 - 1. The unit have two types of Spent Acid Management.
 - a. The unit is having existing permission for reception, concentration and dispatch through consent no: AWH 88120 Date of Issue 06/09/2017 for spent sulphuric acid. The unit will receive spent sulphuric acid (18-40 %) from M/s Aarti Industries Limited (Alchemie Division), Vapi and M/s Apex Pharma Chem Pvt Ltd., Vapi. The consent is for receiving 21600 MT/Annum from M/s Aarti Industries Limited (Alchemie Division) and 7500 MT/Annum from M/s Apex Pharma Chem Pvt Ltd. and concentrate the same and 17292 MT/ Annum as Dilute Sulphiric Acid (70%) dispatched to Single Super Phosphate Manufacturing unit. The distillate water is given back to the same two industries.

The unit has applied to CPCB under Rule 9 and obtained trial permission.

- b. The second type of spent sulfuric acid from unit's own manufacturing activity. The spent acid is generated from nitration products. The spent acid calculation is done based on Material Balance and its quantification of spent acid generation and use, material balance per ton of finished product is again given in Annexure II. Product wise spent acid generation and reuse based on worst case scenario are given by them. Total spent acid generation from the process as per worst case scenario will be 21115 MT/ Month in which 14462 MT/month spent acid will be reused in same products as such in the next batch. Out of Excess 6653 MT/Month, 3924 MT/Month spent sulfuric acid (70%) will be sent to acid concentration plant. After that, concentrated 88% acid will be reuse in PNCB, ONCB & MNCB plant. Remaining 2729 MT/Month (32,748 MT/Annum) spent sulfuric acid(70%) will be sold out to end users under rule-9 permission. MOU with end users are submitted in EIA Report. Due to introduction of above mentioned acid concentration plant the spent acid to be sold out quantity will be reduced from 6653 MT/Month to 2729 MT/Month. Revised Hazardous waste table was attached as Annexure-IV. Details of generation and management of Hydrochloric acid (30%): The HCl (30%) acid is generated from chlorination products. The HCl acid calculation is done based on Material Balance. Product wise HCl acid generation based on worst case scenario are given in below table. It has been verified and there is no any change in the quantity of HCl acid as per EIA Report.
- 2. The distillation residue calculation is done based on Material Balance. To verify the quantification of distillation residue generation and material balance per ton of finished product is again given in Annexure II. Unit has proposed to reduce the Production quantity of 124 TCB, 123 TCB, TCAN products from 3000 MT/Month to 1000 MT/Month in order to reduce the residue quantity. Product wise distillation residue generation based on worst case scenario are given. Due to reduction of 1, 2, 4 TCB, 1, 2, 3 TCB, TCAN products from 3000 MT/Month to 1000 MT/Month the residue will be reduced from 561 MT/Month to 352 MT/ Month. List of products table 1.1 on page no 3 & 4 in Chapter-1 as per EIA report as below,

Revised list of products are as under:

Sr. No.	Name of Product	CAS No.		Proposed quantity in MT/Month	Total quantity after expansion in MT/Month	
1	Para Nitro Chloro Benzene (PNCB)	100-00- 5	5000		0000	
2	Ortho Nitro Chloro Benzene (ONCB)				9000 (Either/Or)	
3	Meta Nitro Chloro Benzene (MNCB)	121-73- 3	100			
4	2,5 Dichloro Nitro Benzene (2,5 DCNB)	89-61-2	400	0	1500 (Either/Or)	
5	3,4 Dichloro Nitro Benzene	99-54-7	600		,	

	(3,4 DCNB)				
6	2,3 Dichloro Nitro Benzene (2,3 DCNB)	3209- 22-1	100		
7	2,4 Dichloro Nitro Benzene (2,4 DCNB)	611-06- 3	400		
8	2,6 Dichloro Nitro Benzene (2,6 DCNB)	601-88- 7	0		
9	2,3,4 Trichloro Nitro Benzene (2,3,4 TCNB)	17700- 09-3	0		
10	2,4,5 Trichloro Nitro Benzene (2,4,5 TCNB)	89-69-0			
11	2,4 Dichloro 3 Fluoro Nitro Benzene	393-79- 3	0		
12	2,4 Dinitro Chloro Benzene (DNCB)	97-00-7	200	1300	1500 (Either/Or)
13	Mono Chloro Benzene (MCB)	108-90- 7	3800		
14	Ortho Dichloro Benzene (ODCB)	95-50-1			
15	Para Dichloro Benzene (PDCB)	106-46- 7	500		
16	Meta Dichloro Benzene(MDCB)	106-46- 7	0	3000 8000* (Either/Or)	
17	1,2,4 Tri Chloro Benzene (1,2,4 TCB)*	120-82- 1	200		
18	1,2,3 Tri Chloro Benzene (1,2,3 TCB)*	87-61-6	200		
19	Trichloroaniline (TCAN)*	636-30- 6 634-93- 5	0		
20	Ortho Anisidine	90-04-0	30	0	30
21	Para Anisidine	104-94- 9	20	0	20
22	Dichloro Aniline	95-76-1	50	0	50
23	2,5 Dichloro Aniline	95-82-9	35	0	35
24	3,4 Dichloro Aniline	95-76-1	15	0	15
25	Ortho Chloro Aniline	95-51-2	10	0	10
26	P-Phenylene diamine	106-50- 3	25	0	25
27	O-Phenylene diamine	95-54-5	225	0	225
28	OCPNA/PCONA	121-87- 9	100	0	100
29	Ortho Nitro Aniline (ONA) / Para Nitro Aniline (PNA)	88-74-4/ 100-01- 6		0	150
30	ONCB Para sulphonic acid	17691- 19-9	25	0	25
31	3,3 Dichloro benzidine	74332-	10	0	10

	sulphate	73-3			
32	Dilute Sulphuric Acid	7665- 93-9	1441	0	1441
	Total		13,936	8,200	22, 136

- * NOTE: as such either/or any product will be 8000 MT/Month, but 1, 2, 4 TCB, 1, 2, 3 TCB, TCAN not more than 1000 MT/Month.
- * Due to reduction of production quantity of 1, 2, 4 TCB, 1, 2, 3 TCB, TCAN from 3000 MT/Month to 1000MT/Month. There will be no any changes in water consumption, waste water generation and in emission. Except reduction in residue.
- Revised Hazardous waste details are as under:

Sr. no.	Type/Name of Hazardous	Specific Source of generation	Category and Schedule	(Quantity MT/Annum)		Management of HW
	waste	(Name of the Activity, Product etc.)	e as per Existin	Existing	Proposed	Total	
1.	ETP waste	ETP	35.3	900	1320	2220	Collection, Storage, Transportation, disposal to TSDF site.
2.	MEE salt	MEE	35.5	0	1460	1460	Collection, Storage, Transportation, disposal to TSDF site.
3.	Distillation Residue	Process Nitration & Chlorination Products	26.1	1440	5292	6732	Collection, Storage, Transportation, disposal to Co processing/ CHWIF.
4.	Spent carbon	Process	36.2	12	0	12	Collection, Storage, Transportation disposal to Co processing/ CHWIF.
5.	Discarded Material (plastic bags, Drums)	Packing Raw Materials	33.1	40	20	60	Collection, Storage, Transportation disposal entire quantity reuse for filling the ETP waste and drums for filling residue.
6.	Used Oil	Maintenance/ Plant	5.1	200 Lit/ Annum	800 Lit/ Annum	1000 Lit/ Annum	Collection, Storage, Transportation disposal by reuse in plant & machinery for lubricating purpose.

	Г	T =	T =	T	ı		[=
7.	a. Dilute H ₂ SO ₄ b. Dilute H ₂ SO ₄ (18- 40 %)	Reception from (a) M/s. Aarti Industries Ltd.(Alchemie organic Div.) & (b) M/s. Apex Pharma Chem Pvt. Ltd.)	B15	a. 21600 b. 7500		a. 21600 b. 7500	Reception, concentration and dispatch through consent no: AWH 88120 Date of Issue 06/09/2017. Reception-M/s. Aarti Industries Ltd. (Alchemie organic Div.) & M/s. Apex Pharma Chem Pvt. Ltd.) collection/ Storage/ concentrate and send dilute sulphuric acid (70%) as product for SSP mfg. and distilled water to parent companies under Rule-9 permission.
8.	Sulfuric Acid (70%)	Nitration Products	B15	43524	36312	79836	Collection, storage and 47088MT/Annum sent to in-house SAC Plant and reuse in-house PNCB/ONCB plant and remaining 32748 MT/Annum sale to authorized industry having permission under rule-9 of Hazardous & other wastes (Management & Transboundry Movement) rule-2016.
9.	Hydrochloric Acid (30%)	Chlorination Products	B15	73980	84456	1, 58, 436	Collection, storage, Transportation and sale to authorized industry having permission under rule- 9 of Hazardous & other wastes (Management & Transboundry Movement) rule-2016.
10.	Aq. Sodium Thio sulphate (Thio Liquor)	OPDA/PPDA Products		1638		1638	Collection, storage, Transportation and sale to authorized industry having permission under rule- 9 of Hazardous & other wastes

	(Management &Transboundry Movement) rule-2016.
--	--

- 3. Unit has considering the baseline monitoring of additional 3 locations (Dumalav, Koparli, and Karambeli) in the different directions at 10 km study area. For the baseline monitoring period of 05th October-2018 to 05th December-2018 has considered. Details of Ambient Air, ground water, surface water, noise and soil monitoring results with photographs are submitted. Unit submitted revised Chapter-3-Baseline Environment Status with 10KM study area.
- The case was reconsidered in the SEAC meeting dated 06/02/2019. EIA consultant of the project was remained present during presentation. Committee asked about management of spent sulphuric acid receipt from sister concern unit and generate from plant, PP satisfactorily addressed about spent sulphuric acid and spent HCl management. Committee asked about distillation residue quantity, PP addressed that distillation residue quantity will be reduced by reduction of production of products from which distillation residue generated. PP informed that revised study area along with ToR incorporated in EIA report.
- Committee found that reply submitted by PP was found satisfactory.

After detailed discussion, it was decided to recommend the project to SEIAA Gujarat for grant of Environmental Clearance with above mentioned project details i.e Product profile & Hazardous waste matrix & with following specific condition:

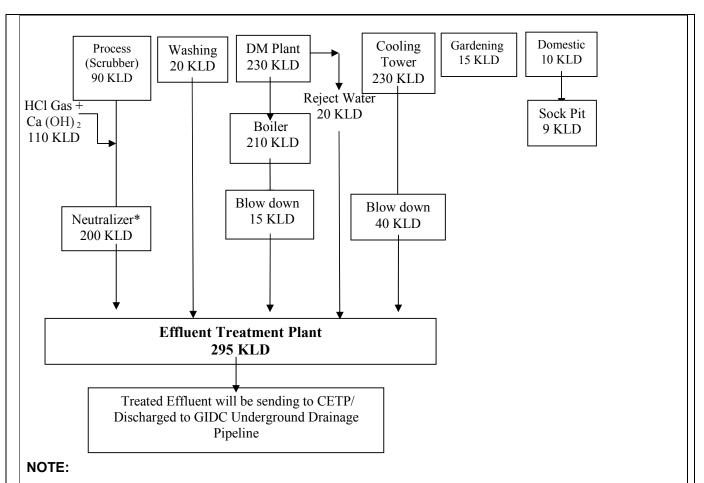
- 1. Unit shall install online continuous monitoring system for VOC specifically for Benzene and shall submit action taken report regarding curb VOC specifically Benzene into atmosphere from plant.
- 2. Unit shall provide CEMS for process gas emission as well as for effluent.

13.	SIA/GJ/IND2/17183/2017	M/s: Aarti Industries Limited	Reconsideration EC
		Plot no- CH-1+2/B, Dahej Ind.	
		Estate, Vagra, Dist-Bharuch.	

Category of the unit: 5(f)

Project status: New

- Project proponent (PP) has submitted online application vide no. SIA/GJ/IND2/17183/2017 dated 02/02/2018 for obtaining Environmental Clearance.
- SEIAA issued TOR to PP vide letter no- SEIAA/GUJ/TOR/5(f)/91/2017, dated: 18/02/2017.
- Project proponent has submitted EIA Report prepared by M/s: Jyoti om Chemical Research Centre Pvt. Ltd based on the TOR issued by SEIAA
- This is a new unit proposes manufacturing of synthetic organic chemicals as tabulated below:


Sr.	Name of the Products	CAS no.	Quantity	End-use of product
No.			MT/Month	-

Chlori	Chlorination Products maximum quantity 64, 464 MT/Annum where in individual maximum quantity of each					
				eration of 30% HCI (45, 600 MT/Annum)		
1.	Mono Chloro benzene And/or	108-90-7	3,545	Dyestuff, Pharma,		
				Pigment & R.M. for Agro Chemical		
				Intermediates.		
2.	Ortho Dichlorobenzene /	95-50-1/	2,286	Dyestuff &		
	Para Dichlorobenzene /	106-46-7/		Pharma Intermediates.		
	Meta Dichlorobenzene And/Or	541-73-1				
3.	1,2,3-Trichlorobenzene /	87-61-6/	1,877	Dyestuff,		
	1,2,4-Trichlorobenzene	120-82-1		R.M. for Agro Chemical Intermediates		
	And/Or			&		
				Speciality Chemicals		
4.	Ortho Chlorotoluene /	95-49-8/	3,955	Dyestuff Intermediates &		
	Para Chlorotoluene	106-43-4				
	And/Or			Pharma Intermediates.		
5.	6-Chloro-2-nitrotoluene /	83-42-1/	3,550	Dyestuff Intermediates		
	4-Chloro-2-nitrotoluene	89-59-8				
	And/Or	101.00.0	F 070	Dynasty off Intowns a diatas		
6.	2-Chloro-4-nitrotoluene And/Or	121-86-8	5,372	Dyestuff Intermediates		
7.	Hydrochloric Acid (30%)	7647-01-0	3,800	Dyestuff Intermediates		
	(Co-product)					

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 21/06/2018.
- Salient features of the project are as under:

Sr. no.	Particulars	Details
Α	Total cost of Proposed Project (Rs. in Crores):	40 Crore
	EMP Cost: (I)Capital cost for EMS (Enviro	onmental Management System): 2.50Crores. Intal protection measures: 3.36 Crores per Annum. I be spent over the period of 5years after commissioning of
В	Total Plot area (sq. meter)	12, 000 sq. meter
	Green belt area (sq. meter)	3, 366 sq. meter
С	Employment generation	Managerial: 10 Nos. Skilled: 40 Nos. Un-skilled: 50 Nos. Total: 100 Nos.
D	Water	
İ	Source of Water Supply (GIDC Bore well, Surface water, Tanker supply etc)	GIDC, Dahej Industrial Estate, Dist. Bharuch.
	Status of permission from the concern authority.	Status of permission from the concern authority. Letter form GIDC, Dahej is attached as annexure-V in EIA Report. NO: GIDC/BRH/WS/166, Date: 18/03/2017
ii	Water consumption (KLD)	

		Category	Quantity	Remarks					
		(AA) Door C	KLD						
		(M) Domestic	10						
		(N) Gardening	15						
		(O) Industrial							
		Process	0						
		Washing	20						
		DM Plant	230	Use in Boiler					
	Cooling		230						
		Others	90	Use in scrubber					
		Industrial Total	570						
		Total (A + B + C)	595						
	13) To	otal water requirement	for the project:	595 KLD					
		uantity to be recycled:		000 1125					
		otal fresh water require							
iii		ater generation (KLD)							
		Category	Waste water	Remarks					
			KLD						
		(I) Domestic	9	Sent to soak pit/septic tank					
		(J) Industrial							
		Process	0						
		Washing	20						
		DM Plant Reject	20						
		Boiler BD	15						
		Cooling BD	40						
		Others (Scrubber)	200 *	Send to ETP*					
		Total Industrial	295						
		waste water							
		Total [A + B]	304						
	- NOTE:-	•							
	1)* Unit w	ill be neutralizing gene	erated 30% HC	I solution from scrubber and send to ETP.					
	2) Genera	ated effluent has been	considered as	maximum worst case scenario.					
İV	Treatmen	t facility within premise	s with capacit	у					
	[In-house	ETP (Primary, Second	dary, Tertiary),	MEE, Stripper, Spray Dryer, STP etc					
		city: 300 KL							
V	Mode of [Disposal & Final meetir	ng point						
	Domestic		Ser	t to soak pit/septic tank					
	Industrial:			ated Effluent will be sending to CETP/ Discharged					
	Ī			C Underground Drainage Pipeline					
vi			like CETP, Co	minori opray dryer, common will etc., Name or or					
vi	GIDC Bha	aruch.		minor spray dryer, common will etc., Name or or					
vi	GIDC Bha Members	aruch. hip of Common facility		minori Spray dryer, Common MLL etc. , Name or Cr					
vi	GIDC Bha Members (For was	aruch. hip of Common facility te water treatment)	(CF)						
	GIDC Bha Members (For was TSDF site	aruch. hip of Common facility te water treatment) b: DETOX Group, Saur	(CF)	Projects Pvt. Ltd, Surat.					
vi vii	GIDC Bha Members (For was TSDF site	aruch. hip of Common facility te water treatment) b: DETOX Group, Saur	(CF)						
	GIDC Bha Members (For was TSDF site	aruch. hip of Common facility te water treatment) e: DETOX Group, Saur d water balance diag	(CF) rashtra Enviro gram with reus	Projects Pvt. Ltd, Surat. se / recycle of waste water					
	GIDC Bha Members (For was TSDF site	aruch. hip of Common facility te water treatment) e: DETOX Group, Saur d water balance diag	(CF) rashtra Enviro	Projects Pvt. Ltd, Surat. se / recycle of waste water nsumption					
	GIDC Bha Members (For was TSDF site	aruch. hip of Common facility te water treatment) e: DETOX Group, Saur d water balance diag	(CF) rashtra Enviro gram with reus	Projects Pvt. Ltd, Surat. se / recycle of waste water nsumption					
	GIDC Bha Members (For was TSDF site	aruch. hip of Common facility te water treatment) e: DETOX Group, Saur d water balance diag	(CF) rashtra Enviro	Projects Pvt. Ltd, Surat. se / recycle of waste water nsumption					
	GIDC Bha Members (For was TSDF site	aruch. hip of Common facility te water treatment) e: DETOX Group, Saur d water balance diag	(CF) rashtra Enviro	Projects Pvt. Ltd, Surat. se / recycle of waste water nsumption					
	GIDC Bha Members (For was TSDF site	aruch. hip of Common facility te water treatment) e: DETOX Group, Saur d water balance diag	(CF) rashtra Enviro	Projects Pvt. Ltd, Surat. se / recycle of waste water nsumption					
	GIDC Bha Members (For was TSDF site	aruch. hip of Common facility te water treatment) e: DETOX Group, Saur d water balance diag	rashtra Enviro gram with reus al Water Co 595 KL/	Projects Pvt. Ltd, Surat. se / recycle of waste water nsumption					

- 1) * Unit will be neutralizing generated 30% HCl solution from scrubber and send to ETP.
- 2) Generated effluent has been considered as maximum worst case scenario.

viii Reuse/Recycle details (KLD)

E	Total reuse- Nil											
E	Air Flue gas emission details											
			/Furnaces/DG se	ets etc. wi	th capacities	viz. TPH,	Kcal/hr, MT/h	r, KVA etc.				
	Sr. No.	Stack attached to	Fuel consumption Permission	Stack Height In meter	Stack Diameter	APCM	Probable Pollutants	Permissible Limit				
	1.	Boiler (15 TPH) (Standby)	Natural Gas (12 SCM/Day)	30 m	750 mm	Low NO _X Burner	SPM SO _x	150 mg/Nm ³ 100 ppm 50 ppm				
	2.	DG Set (750 KVA) (2 nos.)	Diesel (120 Liter/Hr)	12 m	250 mm	Aquatic Encloser	NO _X					

Sr. No.	Stack attached to	Stack Height	Stack Diameter	APCM	Probable Pollutants	Permissible Limit		
1.	Chlorinator	11 meter	100 mm	Carbon tower followed by water scrubber & alkali scrubber.	Cl ₂ HCl	09 mg/Nm ³ 20 mg/Nm ³		
s be	low:			tion measures.				
Sr. No.	Source	Proba Pollu Emis	tant	Control Measures/ APCM				
1.	Chemical handling	Air Pollut (VOC	ant will) and	The VOC emission in terms of handling losses will be reduced by storing chemicals in a tank and handling raw material feeding will be carried out by pumps in a close loop. • Provision of exhaust ventilation • Provision of PPE • Provision of Job rotation to reduce exposure				
2.	Handling of raw material bags in storage area	Air pollut (PM)	ant •					
3.	Flange joints of pipeline, pump & motors	Air pollut (VOC	ant) •	Routine & perion leakage Preventive main maintenance Pumps & moton LDAR program	ntenance, foll	ow SOP for		
4.	Solid raw material transferring to reactor	Air pollut (PM)		Hopper are pro system	vided with po	wder transfer		
5.	Liquid raw material transferring to reactor	Air pollut (VOC Acid fumes	ant ,	Feeding of liquid raw material is carried out by closed pipeline and mechanical seal pump.				
6.	Loading /unloading at storage area	Air	ant	Unloading thro	ugh pipeline t	o tank in a		

	no.	of Hazardous waste	Source of generation (Name of the Activity, Product etc.)	and Sche as p HW Rule	edule // er	(MT/ Annum)			
	1.	ETP Waste	ETP	35.3	:	2000	Collection, storage, transportation & disposal at TSDF.		
	2.	Spent carbon	ETP	36.2		12	Collection, storage, transportation & disposal at TSDF.		
	3.	Distillation Residue	Production (All products)	36.1	;	360	Collection, storage, transportation, disposal at CHWIF/co processing facility.		
	4.	Spent catalyst	Production	26.5		220	Collection, Storage, Transportation, Disposal by Registered regenerators.		
	5.	Discarded containers/ bags	Raw materials	33.1		What so ever	Collection, storage, Decontamination, Disposal by sold to authorize Recyclers/ TSDF site.		
	6.	Used oil	Plant Maintenance	5.1		1 KL/Year	Collection, Storage, Transportation, Disposal by selling to registered reprocessor.		
	7.	Hydrochloric Acid-30%	Scrubber	26.3		45, 600	Collection, Storage, Transportation disposal by selling to actual end users having rule 9 permission/Neutralize with in the promises and send to ETP.		
ii	etc. (For l	HW managem			Pvt. Ltd, Surat.				
iii		is of Non-Haz sal(MSW and	zardous waste others)	& ITS					
	Sr.	Solid Wa		Quant	As Belo		Disposal		
	1.	Glass W			so ever		ed Scrap Vendors.		
	2. Paper waste (Z 44) What so ever Authorized Scrap Vendors.								

	3.	Insulation Waste	What so ever	Collection, Storage,	
				Transportation disposal by at	
	4.	Cotton waste	What so ever	TSDF Site. Collection, Storage,	
	4.	Collon waste	vviiat so evei	Transportation disposal by at	
				TSDF Site.	
	5.	Wooden Waste	What so ever		
G		t management, VOC e		J	
i				recovery. reuse of recovered Sol	vents
		There will be no solven			
ii		mission sources and its			
	Sr.	Source	Waste Type/ Pollution	Control Measures	
	No.	Obamaiaal bandlina		The MOC emission is torse	
	1.	Chemical handling	Air Pollutant (VOC)	The VOC emission in terms of handling losses will be reduced	
			(VOC)	by storing chemicals in a tar	
				and handling raw materi	
				feeding will be carried out b	
				pumps in a close loop.	
	2.	Flange joints of		Routine & period	ic
		pipeline, pump &	(VOC)	inspection to check leakage	:
		motors		Preventive maintenance	e,
				follow SOP for maintenance)
				• Pumps & motors ar	re
				mechanical seal type	
				 LDAR program is followed. 	
	3.	Liquid raw material	Air pollutant	Feeding of liquid ra	w
		transferring to	(VOC, Acid	material is carried out b	oy
		reactor	fumes)	closed pipeline ar	id
				mechanical seal pump.	
	4.	Loading /unloading	Air pollutant	Unloading through pipeling	е
		at storage area	(VOC)	to tank in a close system.	
	1 1		, ,		

- During the meeting dated 21/06/2018, technical presentation made by project proponent.
- During the meeting, the project was appraised based on the information furnished in the EIA Report, and details presented during the meeting.
- The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 5 km radial distance from project site for the period December 2016 to February 2017. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx, HCl, Cl2, CO and VOC at eight locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using ISCST 3 model. The resultant concentrations are within the NAAQS. The modelling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner.

- The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).
- Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios
 has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency
 Plan has been covered in the RA report.
- Committee deliberated on source of raw material Chlorine & its handling,
- PP informed that, in case of steam to be taken from M/s: Meghmani Industries located adjacent to the project site, DM plant will not be operated. Committee asked to consider this situation in water balance details. CEMS will be provided for waste water discharge as well as gaseous emission.
- Committee deliberated on spent HCl generation and its management. Unit has proposed to sell out to
 actual users or to discharge after treatment within premises. Management of spent HCl found not
 convincing and Committee asked PP to resubmit sound management of spent HCl. LDAR programme is
 not covered in EIA report.
- After deliberation, it was unanimously decided to consider the project for further appraisal only after satisfactory submission of the following:
 - 1. Revised water balance considering a situation in which DM plant is not required to operate.
 - 2. Compliance of ToR no. 7. Revised HW management details considering sound management of Spent HCl.
 - 3. Compliance of ToR no. 14 regarding ZLD.
 - 4. Compliance of ToR no. 33 regarding VOC including LDAR programme i.e. Leak Detection and Repairing Programme (LDAR) for all the volatile organic solvent proposed for use in-house with detailed chemical properties including vapor pressure.
 - 5. Compliance of MoEFCC's OM dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER). Fund allocation for Corporate Environment Responsibility (CER) shall be made as per MoEFCC's O.M. No. 22-65/2017-IA.III dated 01/05/2018 for various activities therein. The details of fund allocation and activities for CER shall be incorporated in EIA/EMP report.

Project proponent submitted reply vide their letter dated 31/01/2019. PP has submitted as below:

- Unit has calculated the water consumption and waste water generation by considering the operation of stand by boiler(worst case scenario). During stand by boiler operation unit needs to operate the DM Plant. Therefore there is no change in the water balance given in the EIA Report.
- ➢ Hydrochloric Acid (30%) is generated as a Co-product from the chlorination. It is widely used in industries for different purposes and also for the production of CaCl₂ and Chloro Sulphonic acid etc. The complete pattern of HCl in the industry is fluctuating depending up on global market scenario.In Aarti Industries Limited, we have CaCl₂ granulated plant in Kutch & Jhagadia with capacity of 3000 MT/Month and 4800 MT/Month respectively. However market demand is also fluctuating and we are not even able to utilize the full installed capacity of CaCl₂. With the above scenario to keep on running

the plant we need to manage the HCl by neutralizing within the premises and discharge as effluent. One of the purpose of selecting this site is avability of effluent conveyance line up to deep sea. Sea water is full of TDS – mainly in form of sodium chloride. We are proposing to discharge calcium chloride solution in to the sea. This will not have any adverse impact on marine environment. The Hydrochloric Acid (30%) quantity generated per worst case scenario is 45, 600 MT/Annam. This hydrochloric acid will be sent to ETP for neutralization using hydrated lime and after neutralization will be discharge to GIDC Drainage line or whenever market demand is there for 30% HCl will be sold to actual end user having permission of rule 9.The quality of HCl solution generated by unit is same as available in market and will be sold to end users. MOU with end users are attached as Annexure – X in EIA report. The HCL 30% shall be sold to authorized end users for utilization as per Hazardous Waste and other (Management and Trans boundary Movement) Rules, 2016.

- ➤ For making ZLD, unit will required to install multi effect evaporator. Since the TDS of effluent will be very high, RO system will not work. The energy/coal consumption in the evaporator will be 30 MT/Day, Fly ash generation will be 1.5 MT/Day and MEE salt generation will be 8.25 MT/Day. This will be not viable from environment as well as economic point of view. So, it is not possible to adopt 'Zero' Liquid discharge. Unit will discharge treated effluent to GIDC underground drainage pipeline. So, undertaking will not be applicable.
- Leak Detection and Repairing Programme (LDAR) for all the volatile organic solvents are given.
- ➤ Unit will spend Rs. 80.5 Lakhs i.e. 2.0% of the project cost toward CER. This is as per OM dated 01/05/2018. Unit is Greenfield project. So, unit will fund allocation for the CER 2% of capital investment as per new Office Memorandum F. No: 22-65/2017-IA.III, MoEF &CC on Dated: 1st May, 2018. The total cost of the proposed project (Rs.40 Crore) over a period of five years towards CER activity. So, as per the proposed project cost Rs. 80.5 Lakhs used in the CER activities. Budgetary allocation is submitted. Copy of letters from Rahiyad gam panchayat, Jageshwar gam panchayat, Primary School from Jageshwar village, shree Rukhneshwar trust, Lakhigam, Tal: Vagra, Dist.: Bharuch is submitted.
- During the SEAC meeting dated 06/02/2019, the said reply was considered by the Committee. The above mentioned reply was found satisfactory.
- Committee found that reply submitted by PP was satisfactory.

After detailed discussion, it was decided to recommend the project to SEIAA Gujarat for grant of Environmental Clearance with the following specific condition.

- 1. Unit shall install online continuous monitoring system for VOC specifically for Benzene and shall submit action taken report regarding curb VOC specifically Benzene into atmosphere from plant.
- 2. Unit shall provide CEMS for process gas emission as well as for effluent.

14.	SIA/GJ/IND2/30427/2018	M/s: Cadila Healthcare Limited	Screening and scoping
	0		

	(Unit-1)	
	Plot No. 291, G.I.D.C. Estate,	
	Ankleshwar, Dist -Bharuch	

Category of the unit: 5(f)

Status of the project: Expansion

- This office has received an application vide their online proposal no. SIA/GJ/IND2/30427/2018 dated 15/01/2019 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.
- This is an existing unit engaged in Synthetic organic chemicals and now proposes for expansion as tabulated below:

Sr. No.	Name of the Products	CAS No.	Quantity MT/Month			End-use of the Products
		CI No.	Existing	Proposed	Total	
1	Losartan Potassium	0124750- 99-8	2.500	5.000	7.500	These all products are Bulk Drugs which will be used for
2	Quetiapine Hemifumarate	0111974- 69-7	0.750	3.000	3.750	manufacturing of Formulation Medecines
3	Paroxetine Hydrochloride	0078246- 49-8	1.000	3.000	4.000	where the therapeutic use of these medicines may vary
4	Famotidine	0006824- 35-6	7.000	-6.900	0.100	
5	Fluconazole	0086386- 73-4	0.250	0.250	0.500	
6	Fluvastatin Sodium	0093957- 55-2	0.500	0.500	1.000	
7	Lansoprazole	0103577- 45-3	0.750	1.500	2.250	
8	Meloxicam	0007305- 71-7	1.000	3.000	4.000	
9	Pantoprazole Sodium	0102625- 70-7	0.800	1.500	2.300	
10	Amlodipine Maleate	0088150- 47-4	0.500	5.000	5.500	
11	Atorvastatin Calcium	0134523- 03-8	3.000	1.000	4.000	
12	Bisacodyl	0000603- 50-9	0.600	2.000	2.600	
13	Calcium Polystyrene Sulphonate	0099300- 78-4	0.250	0.250	0.500	
14	Cinitapride Hydrogen Tartrate	0066564- 14-5	0.025	0.100	0.125	
15	Clopidogrel Bisulphate	0135046- 48-9	1.000	2.000	3.000	
16	Desloratadine	0100643- 71-8	0.300	1.000	1.300	
17	Desvenlafaxine succinate	0386750- 22-7	0.500	1.000	1.500	
18	Pazufloxacin Mesylate	136905- 87-8	0.050	0.100	0.150	

					ı
19	Duloxetine Hydrochloride	136434- 34-9	0.300	2.500	2.800
20	Venlafaxine Hydrochloride	99300- 78-4	1.000	10.000	11.000
21	Loratadine	79794- 75-5	2.000	5.000	7.000
22	Glibenclamide / Glyburide	10238- 21-8	2.500	2.500	5.000
23	Doxophylline	69975- 86-6	0.500	0.500	1.000
24	Escitalopram Oxalate	219861- 08-2	0.500	0.000	0.500
25	Esomeprazole Magnesium	217087- 09-7	0.500	1.000	1.500
26	Eszopiclone	138729- 47-2	0.100	0.100	0.200
27	Fidarestat	105300- 43-4	0.050	0.100	0.150
28	Ipratropium	66985- 17-9	0.025	0.100	0.125
29	Ivabradine Hydrochloride	148849- 67-6	0.050	0.100	0.150
30	Levofloxacin Hemihydrate	138199- 71-0	2.000	3.000	5.000
31	Omeprazole	73590- 58-6	6.500	10.000	16.500
32	Carvedilol /C -5 / B-3	72956- 09-3	2.500	3.000	5.500
33	Etoricoxib / CDTH Phosphate	202409- 33-4	1.000	5.000	6.000
34	Omeprazole Magnesium	95382- 33-5	0.300	1.000	1.300
35	Paliperidone	144598- 75-4	0.100	0.100	0.200
36	Piperaquine Phosphate	4085-31- 8	0.100	0.100	0.200
37	Amlodipine Besylate	111470- 99-6	4.000	6.000	10.000
38	Lamivudine	134678- 17-4	1.600	0.000	1.600
39	Proquanil Hydrochloride	637-32-1	0.250	0.250	0.500
40	Mebeverine Hydrochloride	2753-45- 9	0.500	0.500	1.000
41	Linezolid	165800- 03-3	0.500	0.500	1.000
42	Prasugrel	150322- 43-3	0.250	0.250	0.500
43	Rimonabant	168273- 06-1	0.250	0.250	0.500
44	Tramadol Hydrochloride	36282- 47-0	10.000	5.000	15.000

45	Lamotrigine	84057- 84-1	2.000	3.000	5.000
46	Tenatoprazole	113712- 98-4	0.100	0.100	0.200
47	Nicronadil	65141- 46-0	0.100	0.500	0.600
48	Candesartan Cilexetil	145040- 37-5	0.500	0.500	1.000
49	Fosphenytoin Sodium	92134- 98-0	0.300	0.500	0.800
50	Glimepiride	93479- 97-1	0.250	0.500	0.750
51	Apomorphine Hydrochloride	41372- 20-7	0.025	0.025	0.050
52	Arformoterol Tartrate	200815- 49-2	0.025	0.025	0.050
53	Cilansetron	120635- 74-7	0.025	0.025	0.050
54	Prulifloxacine	123447- 62-1	0.050	0.050	0.100
55	Montelukast Sodium	151767- 02-1	0.050	0.050	0.100
56	Dapoxetine Hydrochloride	129938- 20-1	0.100	0.100	0.200
57	Pioglitazone Hydrochloride	112529- 15-4	0.100	0.500	0.600
58	Pitavastatin	147511- 69-1	0.025	0.025	0.050
59	Reboxetine Methane Sulphonate	98769- 82-5	0.025	0.025	0.050
60	Pregablian	148553- 50-8	0.250	1.000	1.250
61	Sertraline Hydrochloride	79559- 97-0	0.500	0.500	1.000
62	Revaprazan Hydrochloride	7647-01- 0	0.025	0.025	0.050
63	Roflumilast	162401- 32-3	0.100	0.100	0.200
64	Rosuvastatin Calcium (RO 117)	147098- 20-2	0.200	0.500	0.700
65	Rupatadine Fumarate	158876- 82-5	0.050	0.250	0.300
66	Zileuton	132880- 11-6	0.025	0.250	0.275
67	Sitagliptine	486460- 32-6	0.100	0.100	0.200
68	Tamsulosin Hydrochloride/Amine	112101- 81-2	0.050	1.950	2.000
69	Tiotropium Bromide	186691- 13-4	0.025	0.500	0.525
70	Tirofiban Hydrochloride	149490- 61-9	0.005	0.500	0.505

71	Clebopride	55905- 53-8	0.025	0.500	0.525	
72	Olmesartan	144689- 63-4	0.050	0.500	0.550	
73	Silodosin	160970- 64-9	0.025	1.000	1.025	
74	Solifenacin	242478- 37-1	0.100	0.100	0.200	
75	Telemisartan	144701- 48-4	0.100	1.000	1.100	
76	Hydroxy Chloroquine Sulfate	747-36-4	0.200	0.200	0.400	
77	Mitiglinide Calcium	145525- 41-3	0.025	0.025	0.050	
78	Naproxcinod	163133- 43-5	0.025	0.025	0.050	
79	Nipradilol	81486- 22-8	0.025	0.025	0.050	
80	Trospium Chloride	10405- 02-4	0.020	0.020	0.040	
81	Febuxostat	144060- 53-7	0.050	0.050	0.100	
82	Levalbuterol	50293- 90-8	0.025	0.025	0.050	
83	Ramelteon	196597- 26-9	0.025	0.025	0.050	
84	Ramosetron	132036- 88-5	0.025	0.025	0.050	
85	Renzapride	109872- 41-5	0.025	0.025	0.050	
86	Simvastatin	79902- 63-9	0.400	0.400	0.800	
87	Mesalamine	89-57-6	0.000	5.000	5.000	
88	Valsartan	137862- 53-4	0.000	10.000	10.000	
89	Etodolac	41340- 25-4	0.000	5.000	5.000	
90	Tenoxicam	59804- 37-4	0.000	0.500	0.500	
91	Benzoyl Peroxide Hydrous	94-36-0	0.000	1.000	1.000	
92	Zaleplon	151319- 34-5	0.000	1.000	1.000	
93	Ranolazine	95635- 55-5	0.000	1.000	1.000	
94	Bupropion Hydrochloride	31677- 93-7	0.000	6.000	6.000	
95	Clorthredion		0.000	1.500	1.500	
96	Suxomethnium Chloride	6101-15- 1	0.000	0.500	0.500	
97	Azilsartan Medoxomil	147403- 03-0	0.000	1.500	1.500	
98	Lornoxicam	70374-	0.000	4.0	4.00	
	1					

		39-9				
99	R & D Products		0.000	2.000	2.000	
	Total		64.300	134.70	199.00	

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 06/02/2019.
- The project proponent along with their expert /consultant M/s. Aqua-Air Environmental Engineers Pvt. Ltd., Surat attended the meeting and made presentation before the committee
- Salient features of the project are as under:

Sr. no.	Particulars	Details	
Α	Total cost of Proposed Project	Existing: 205	
	(Rs. in Crores):	Proposed: 0	
		Total: 205	
В	Total Plot area	Existing:	42120.50 Sq. m.
	(sq. meter)	Proposed:	0.00 Sq. m.
		Total:	42120.50 Sq. m.
	Green belt area	Existing:	10027.00 Sq. m.
	(sq. meter)	Proposed:	0.00 Sq. m.
		Total:	10027.00 Sq. m.
С	Employment generation	Existing: 586	
		Proposed: 100	
		Total: 686	
D	Water		
i	Source of Water Supply	GIDC Water S	upply
	(GIDC Bore well, Surface water, Tanker supply etc)		
	Status of permission from the concern authority.	Obtained	

- Technical presentation was made by the project proponent during SEAC meeting dated 06/02/2019.
- Committee deliberated on compliance status of existing project, water balance, HW management, safety aspects etc.
- Committee asked about compliance of existing plant and any legal action taken against unit, PP informed that CCA compliance report submitted by the unit, one show cause notice issued by Board and compliance of SCN submitted to the Board. PP addressed area adequacy, green belt, new proposed products water and waste water management in length. PP informed that green belt development for proposed plant will be carried out in waste land of GIDC.
- Committee asked about proposed R and D work production quantity, PP satisfactorily addressed about it.
- Considering the above project details, after detailed discussion, the terms of reference (ToR) were prescribed as below and as per the standard TOR for the Synthetic Organic Chemical projects recommended by SEAC vide letter no. EIA-10-GEN-21/1480 dated 14/09/2017 and approved by SEIAA in its 12th meeting dated 16/09/2017 for the EIA study to be done covering 10 Km radial distance from the project boundary.
 - 1. Unit shall install CEMS for process gas emission as well as effluent discharge.

- 2. Unit shall obtain PESO certificate for solvent handling for proposed expansion.
- 3. Adequacy of proposed area with respect to plant machineries, EMS, green belt, safety aspect, raw material & product storage considering worst case scenario. Submit proper lay out plan clearly demarcating all activities with scale.
- 4. Compliance of MoEFCC's OM dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER). Fund allocation for Corporate Environment Responsibility (CER) shall be made as per MoEFCC's O.M. No. 22-65/2017-IA.III dated 01/05/2018 for various activities therein. The details of fund allocation and activities for CER shall be incorporated in EIA/EMP report.
- 5. Details with respect to justification for proposed expansion: (1) To address proportionate availability of space for production plant. (2) To address proportionate availability of storage area for raw materials finished goods, utilities and goods carrier movement within premises. (3) To address proportionate captive/common infrastructure available to accommodate additional load due to proposed expansion. (4) Environment impact and its mitigation measures for common/ captive infrastructure due to proposed production.
- 6. Explore the use of renewable energy to the maximum extent possible. Details of provisions to make the project energy-efficient through of energy efficient devices and adoption of modes of alternative eco-friendly sources of energy like solar water heater, solar lighting etc. Measures proposed for energy conservation.
- 7. Leak Detection and Repairing Programme (LDAR) for all the volatile organic solvent proposed for use in-house with detailed chemical properties including vapor pressure. LDAR shall endeavour prevention of losses of solvents to the best minimum extent.
- 8. Qualitative and quantitative analysis of hazardous waste streams generation from the manufacturing process (Product wise). Explore the possibility to reuse such waste streams within premises as raw materials for other products or to convert it into valuable products instead of selling out side. Sound management of such waste streams as per the HW Rules 2016 as amended time to time. Feasibility report for utilization shall be incorporated in EIA report.
- 9. To define unit processes involved in R & D Products keeping proposed product group in view.
- 10. Ensure that R & D products shall be of similar chemistry and the pollution load shall remain within the proposed in EIA/EMP report.
- 11. Legal undertaking regarding no continuous/commercial manufacturing of the R & D products.
- The TOR prescribed as above and as per the standard TOR approved by SEIAA and the model ToRs available in the MoEFCC's sector specific EIA Manual for 'Synthetic Organic Chemical Industry' shall be considered as generic TORs for preparation of the EIA report in addition to all the relevant information

as per the generic structure of EIA given in Appendix III in the EIA Notification, 2006. The project proponent shall have to apply for Environmental clearance through online portal http://environmentclearance.nic.in/ along with final EIA report.

15.	SIA/GJ/IND2/30753/2019	M/S: Sun Industries	Screening and scoping
		Plot No. 38/10, GIDC, Jhagadia	
		Ind. Estate, Ankleshwar, Dist -	
		Bharuch	

<u>Category of the unit:</u> 5(f) <u>Status of the project:</u> New

- This office has received an application vide their online proposal no. SIA/GJ/IND2/30753/2019 on dated 26/01/2019 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.
- This is a new unit proposes manufacturing of synthetic organic chemicals as tabulated below:

Sr.	Name of the Products	CAS no. /CI no.	Quantity	End-use of products
No.			MT/Month	
1.	Scarlet ChromeAND/OR	12656-85-8	40	Dying and Printing in Textile, Paper, Paints and Leather
2.	Lemon ChromeAND/OR	1344-37-2		Dying and Printing in Textile, Paper, Paints and Leather
3.	Middle ChromeAND/OR	1344-37-2		Dying and Printing in Textile, Paper, Paints and Leather
4.	Ultramarine Blue	57455-37-5		Dying and Printing in Textile, Paper, Paints and Leather
5.	Pigment Alpha Blue 15:0 & 15:1AND/OR	147-14-8	40	Dying and Printing in Textile, Paper, Paints and Leather
6.	Pigment Beta Blue 15:3 & 15:4AND/OR	147-14-8		Dying and Printing in Textile, Paper, Paints and Leather
7.	Pigment Blue 60	81-77-6		Dying and Printing in Textile, Paper, Paints and Leather
8.	Pigment Red 122/254AND/OR	980-26-7/ 84632-65-5	40	Dying and Printing in Textile, Paper, Paints and Leather
9.	Pigment Yellow 180/191	77804-81-0/ 129423-54-7		Dying and Printing in Textile, Paper, Paints and Leather
	TOTAL		120	

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 06/02/2019.
- The project proponent along with their expert /consultant M/s. Eco earth Technology attended the meeting and made presentation before the committee
- Salient features of the project are as under:

S	r. Partio	culars	Details
n	O.		

A	Total cost Proposed Project	of	1.76 Crores					
	(Rs. in Crores):							
В	Total Plot area(sq meter)	-	1650 Sq. m.					
	Green belt area		550 Sq. m.					
	(sq. meter)							
С	Employment		40 Nos or more					
	generation							
D	Water							
i	Source of Water				osed new project will	be satisfied through		
	Supply		GIDC water sup Ultimate fresh w	oply. vater requirement	:: 92 KLD			
	(GIDC Bore well,		At the time of EIA, we will be provide.					
	Surface water, Tan	ker						
	supply etc)							
	Status of permissio	n						
	from the concern							
	authority.							
ii	Water consumption	on (Kl	L D)					
		Cate		Quantity	Remarks			
			,	KLD				
	-	(F	P) Domestic					
		ζ-	,	04				
	(0		Q) Gardening					
		(F	R) Industrial			-		
			Process +	60				
			Washing					

17) Quantity to	Cooling Others Industrial Total Total (A + B + C) r requirement for the p be recycled: 0.0 KLD water requirement: 92.	•		
17) Quantity to	Industrial Total Total (A + B + C) r requirement for the p be recycled: 0.0 KLD	86.0 92.0 roject: 92.0 KLD		
17) Quantity to	r requirement for the p	92.0 roject: 92.0 KLD		
17) Quantity to	r requirement for the p	roject: 92.0 KLD		
17) Quantity to	be recycled : 0.0 KLD	•		l
17) Quantity to	be recycled : 0.0 KLD	•		
,	-			
18) Total fresh	water requirement: 92.			
	4	0KLD		
aste water gene	eration (KLD)			
J : 1 : 1		Waste water	Remarks	
	(K) Domestic			
	() 20.1100110	-		
	(L) Industrial			
	(=,			
	Process +	34		
	Washing			
	Boiler	03		
	Cooling	03		
	Others	0.0		
	Total Industrial	40.0		
	waste water			
	Total [A + B]	42.0		
		Washing Boiler Cooling Others Total Industrial waste water Total [A + B]	Category Waste water KLD (K) Domestic 02 (L) Industrial Process + 34 Washing Boiler 03 Cooling 03 Cooling 03 Others 0.0 Total Industrial waste water Total [A + B] 42.0	Category Waste water KLD (K) Domestic 02 (L) Industrial Process + 34 Washing Boiler 03 Cooling 03 Others 0.0 Total Industrial waste water

	Domestic:	Domestic waste water will be disposed in to Septic tank/Soak pit.						
	Industrial:	For proposed new project, there will be a generation of waste water from the process and utility etc. and generated waste water will be collected and						
	treated into ETP and after adequate treatment (i.e. Primary, secondary,							
vi	In case of Common fac	tertiary),it will be discharge to Jhagadia pipeline project of NCT. sility (CF) like CETP, Common Spray dryer, Common MEE etc., Name of CF						
VI	in case of Common fac	ility (CF) like CETF, Common Spray dryer, Common MEE etc. , Name of CF						
		will be treated into unit's own ETP [Primary, Secondary, Tertiary] and then sent roject by NCT (Narmada Clean Tech) .						
	Membership of Commo							
	Membership certificate	is attached as Annexure-I.						
vii	Simplified water bala	nce diagram with reuse / recycle of waste water						
	Gardening 02 KL/Day Domestic 04 KL/Day Septic/Soak pit 02 KL/Day	Process 60 KL/Day Process 34 KL/Day ETP 40 KL/Day Sludge 0.8 KL/Day To TSDF Site						
viii	Reuse/Recycle details	(KLD)						

	Total reuse	∋:- NIL									
E	Air										
İ	Flue gas en No. of Boile		1/Furnac)G sets et	tc. with capa	acities viz. T	ГРІ	H, Kcal/hr,		
			Sourc	Э					Type of _		Air
		Sr.	of emissi	ion	Stack Height	Type of	Quantity of Fuel	е	missions		lution entrol
		no.	With		(meter)	Fuel	MT/Day		i.e. Air		asures
			Capac		(Р	ollutants		PCM)
		1	Steam Boiler [2 Ton /Hrs.]		33	Bio Coal and/or Imported Coal	3 MT Day and/or 2 MT/Day	S	M SO ₂ IO _x	Sep Bag	clone arator, Filter, ubber
		2	D.G. So [100 KVA]	et	11	Diesel	10 Lit/Hr.	IN	lOχ	S	equate tack eight
ii	- Process ga	s i.e. T	ype of p	ollut	ant gases	s (SO _{2,} HCI,	NH _{3,} Cl _{2,} NO	O _x 6	etc.)		
				S	pecific						
					ource of				Air Pollu	tion	
			Sr.		nission	Type of	Stack/Vei	nt	Contro		
			no.	(N	ame of	emission	Height		Measur	es	
				Dw	the		(meter)		(APCN	1)	
					oduct & rocess)						

	Not A	Applicable			
_	t ive emission details	with its mitiga	tion measures.		
As be	elow:				
•	Minimum Joints & f	langes			
•	Pumps with mecha	nical seals			
•	Proper ventilation				
•	Adequate PPEs	0 11	100		
	rdous waste (as per ement) Rules 2016.	the Hazardo	us and Other w	vastes (Manage	ment and Transbot
Sr.	Type/Name of	Specific	Category	Quantity	Management of
no.	Hazardous waste	Source of	and	(MT/Annum)	HW
		generation	Schedule as	,	
		(Name of	per HW		
		the	Rules.		
			Rules.		
		Activity,			
		Product			
		etc.)			
1.	Empty barrels/Containers / liners contaminated with hazardous chemicals /wastes	Raw Material and Packaging	33.1	200 Nos	Collection, Storage, Transportation, Decontamination, reuse or send back to supplier, and sold to Authorized Vendors.
2.	Used Oil	From Machinery	5.1	0.02	Collection, Storage, Transportation and sold to authorized Recyclers.
3.	ETP Sludge	ETP	35.3	300	Collection, Storage, Transportation and sent to TSDF site.
4.	Process sludge	Process [1] Scarlet Chrome [2] Lemon Chrome [3] Middle Chrome	A4	250	Collection, Storage, Transportation and sent to TSDF site.

	5.	Spent Sulphuric Acid	Process [1] Pigment Alpha Blue 15:0 & 15:1 [2]Pigment Blue 60		600	Collection, Storage, Transportation and sell to authorized end users registered		
						under rule-9.		
ii		pership details of F, CHWIF etc.	At the time of	EIA, we will be p	rovide members	hip certificate.		
	mana	igement)						
iii	Haza dispo	ls of Non- rdous waste & its sal V and others)	Not Applicable					
G	Solve	ent management, \	/OC emissions	etc.				
i	Types	s of solvents, Detail	s of Solvent rec	overy, % recove	ry. reuse of reco	overed Solvents		
	•	Not Applicable						
ii	VOC	emission sources a	ind its mitigation	measures				
	Minimum joints/flanges Adequate Condenser Brine will be utilised as chilling agent Pumps with double mechanical seals Proper Ventilation PPEs							

- Technical presentation was made by the project proponent during SEAC meeting dated 06/02/2019.
- Committee deliberated on water balance, waste water generation, HW management, safety aspects etc.
- Committee asked about Heavy metal treatment for proposed chromate base products, PP satisfactorily addressed about it.
- Committee insisted for process sludge, sodium dichromate will be disposed to TSDF as per HW rules 2016
- Considering the above project details, after detailed discussion, the terms of reference (ToR) were prescribed as below and as per the standard TOR for the Synthetic Organic Chemical projects recommended by SEAC vide letter no. EIA-10-GEN-21/1480 dated 14/09/2017 and approved by SEIAA in its 12th meeting dated 16/09/2017 for the EIA study to be done covering **10 Km** radial distance from the project boundary.
 - 1. Unit shall dispose sodium dichromate sludge after encapsulation as per HW Rules 2016.
 - 2. Adequacy of proposed area with respect to plant machineries, EMS, green belt, safety aspect,

- raw material & product storage considering worst case scenario. Submit proper lay out plan clearly demarcating all activities with scale.
- Compliance of MoEFCC's OM dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER). Fund allocation for Corporate Environment Responsibility (CER) shall be made as per MoEFCC's O.M. No. 22-65/2017-IA.III dated 01/05/2018 for various activities therein. The details of fund allocation and activities for CER shall be incorporated in EIA/EMP report.
- 3. Explore the use of renewable energy to the maximum extent possible. Details of provisions to make the project energy-efficient through of energy efficient devices and adoption of modes of alternative eco-friendly sources of energy like solar water heater, solar lighting etc. Measures proposed for energy conservation.
- 4. Leak Detection and Repairing Programme (LDAR) for all the volatile organic solvent proposed for use in-house with detailed chemical properties including Vapour pressure. LDAR shall endeavour prevention of losses of solvents to the best minimum extent.
- 5. Qualitative and quantitative analysis of hazardous waste streams generation from the manufacturing process (Product wise). Explore the possibility to reuse such waste streams within premises as raw materials for other products or to convert it into valuable products instead of selling out side. Sound management of such waste streams as per the HW Rules 2016 as amended time to time. Feasibility report for utilization shall be incorporated in EIA report.
- 6. Safety precautions including flame proof electric fittings to be taken to avoid fire hazard & Occupational health hazards during unloading, storage, transportation, handling and processing of hazardous chemicals like Sodium Di chromate and other hazardous chemicals.
- The TOR prescribed as above and as per the standard TOR approved by SEIAA and the model ToRs available in the MoEFCC's sector specific EIA Manual for 'Synthetic Organic Chemical Industry' shall be considered as generic TORs for preparation of the EIA report in addition to all the relevant information as per the generic structure of EIA given in Appendix III in the EIA Notification, 2006. The project proponent shall Environmental through online have to apply for clearance portal http://environmentclearance.nic.in/ along with final EIA report.

16.	SIA/GJ/IND2/30096/2018	M/s: NCR Colors LLP Plot No. 3507/D, Phase IV, GIDC Estate, vatva, Ahmedabad	Screening and scoping					
Catego	Category of the unit: 5(f)							
Status of the project: Expansion								

- This office has received an application vide their online proposal no. SIA/GJ/IND2/30550/2018 dated 19/01/2019 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.
- This is an existing unit engaged in organic chemicals and now proposes for expansion of synthetic organic chemical products as tabulated below:

Sr.	Name of the	CAS no. /		Quantity		End-use of the products
no.	Products	CI no.	1	MT/Month		
			Existing	Proposed	Total	
1	Reactive Golden Yellow R					Use in Dying , Textile, Paper & Lather Industries
2	Reactive Brilliant Red M5B	17804-49- 8	15	0	15	& Lattier industries
3	Acid Orange 7	633-96-5				
4	Acid Black 194	61931-02- 0				
5	Acid Black 210	99576-15- 5	0	65	65	
6	Acid Black 234	157577- 99-6				
	TOTAL		15	65	80	

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 06/02/2019.
- The project proponent along with their expert /consultant M/s. Bhagvati Enviro care Pvt. Ltd attended the meeting and made presentation before the committee
- Salient features of the project are as under:

Sr.	Particulars	Details
no.		
A	Total cost of Proposed Project	Existing: 4.24 Crores
	(Rs. in Crores):	
		Proposed: 0.27 Crores
		Total: 4.52 Crores
В	Total Plot area	Existing: 625 Sq. m.
	(sq. meter)	
		Proposed: 0
		Total: 625 Sq. m.

	(sq. meter)			Existing: 30 Sq. m.		
				Proposed: 40 Sq. m.		
				Total: 70 Sq. m.		
С	Employment generation	on		Existing: 7		
				Proposed: 8		
				Total: 15		
D	Water					
i	Source of Water Supply			GIDC Vatva Bo	re well	
	(GIDC Bore well, Surface	e water, Ta	nker supply			
	etc)			N/		
	Status of permission fro	m the conce	ern authority.	Yes		
ii	Water consumption (K	(LD)				
ii	Water consumption (K	-	Proposed	Total after	Remarks	-
ii	Water consumption (K	Existing KLD	Proposed (Additional)	Total after Expansion	Remarks	
ii	Water consumption (K	Existing		Total after Expansion KLD	Remarks	
ii	Water consumption (K	Existing	(Additional)	Expansion	Remarks	
ii		Existing KLD	(Additional) KLD	Expansion KLD	Remarks	
ii		Existing KLD	(Additional) KLD	Expansion KLD	Remarks	
ii	(S) Domestic (T) Gardening	Existing KLD	(Additional) KLD	Expansion KLD 1.5	Remarks	
ii	(S) Domestic	Existing KLD	(Additional) KLD	Expansion KLD 1.5	Remarks	
ii	(S) Domestic (T) Gardening (U) Industrial	Existing KLD 0.5	(Additional) KLD 1	Expansion KLD 1.5	Remarks	
ii	(S) Domestic (T) Gardening	Existing KLD 0.5	(Additional) KLD	Expansion KLD 1.5	Remarks	
ii	(S) Domestic (T) Gardening (U) Industrial Process	Existing KLD 0.5 0	(Additional) KLD 1 0.3	Expansion KLD 1.5 0.3	Remarks	
ii	(S) Domestic (T) Gardening (U) Industrial	Existing KLD 0.5	(Additional) KLD 1	Expansion KLD 1.5	Remarks	
ii	(S) Domestic (T) Gardening (U) Industrial Process Washing	Existing KLD 0.5 0 1	(Additional) KLD 1 0.3	Expansion KLD 1.5 0.3	Remarks	
ii	(S) Domestic (T) Gardening (U) Industrial Process	Existing KLD 0.5 0 1	(Additional) KLD 1 0.3	Expansion KLD 1.5 0.3	Remarks	
ii	(S) Domestic (T) Gardening (U) Industrial Process Washing	Existing KLD 0.5 0 0.45	(Additional) KLD 1 0.3 1.95 2 1.5	Expansion KLD 1.5 0.3 2.4	Remarks	
ii	(S) Domestic (T) Gardening (U) Industrial Process Washing	Existing KLD 0.5 0 1	(Additional) KLD 1 0.3	Expansion KLD 1.5 0.3	Remarks	

	Grand Total (A+B+C)						
	19) Total water req 20) Quantity to be re 21) Total fresh wate	ecycled: 0		9.2 KLD			
iii	Waste water generation	on (KLD)					
	Category	Existing	Proposed	Total after	Remarks		
		KLD	(Additional)	Expansion			
			KLD	KLD			
	(M) Domestic	0.5	0.8	1.3			
	(N) Industrial						
	Process	0	0	0			
	Washing	1	2	3			
	Boiler	0.05	0.15	0.2			
	Total Industrial waste water	1.05	2.15	3.2			
iv	Treatment facility within	premises v	vith capacity I	For existing and	d Proposed1		
	[In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc						
ETP (For Low Concentrated Effluent) (Cap-11 KLD Having Primary & Tartary Treatment Unit)							
٧	Mode of Disposal & Final meeting point						
	Domestic:			1.3 KLD_Discha	rge to soak pit vi	a septic tank.	
	Industrial:			Total Industrial V	Waste Water Ger	neration: 3.2 KLD	

- 1.05 KLD (0.2-Boiler Blow down & 0.85-Floor Washing) _ Treat in Existing ETP (Cap-6 KLD, Primary & Tertiary treatment unit) then send to as per Existing CCA CETP – Vatva.
- 2.15 KLD (Vessel Washing) _ Treat in Upgraded Proposed ETP (Cap-5 KLD, Primary treatment unit) then send to Common Spray Dryer at The Green Environment Service Co. operative Society Ltd. – Vatva & Chhatral Environment Management System Pvt. Ltd. -Dhanot for Spray Drying.
- vi In case of Common facility (CF) like CETP, Common Spray dryer, Common MEE, CHWIF etc.

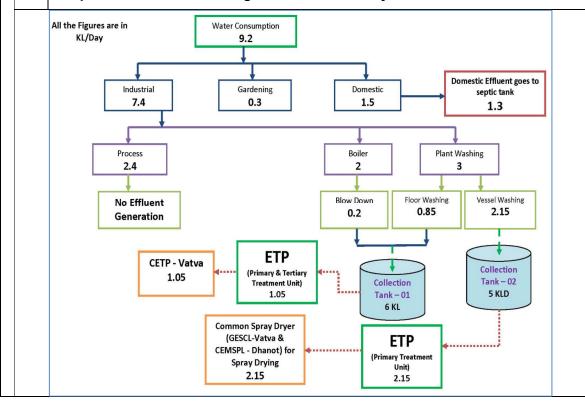
 Name of Common facility

CETP - The Green Environment Service Co. Operative Society Ltd.-Vatva

Common Spray Dryer - The Green Environment Service Co. Operative Society Ltd.-Vatva

Common Spray Dryer - Chhatral Environment System Pvt. Ltd. - Dhanot

Membership of Common facility (CF)


(For waste water treatment)

CETP - The Green Environment Service Co. Operative Society Ltd.-Vatva

Common Spray Dryer - The Green Environment Service Co. Operative Society Ltd.-Vatva

Common Spray Dryer – Chhatral Environment System Pvt. Ltd. - Dhanot

vii | Simplified water balance diagram with reuse / recycle of waste water

vii Reuse/Recycle details (KLD)

[Source of reuse & application area]

Total reuse: Nil

_

E Air

i Flue gas emission details

No. of Boilers/TFH/Furnaces/DG sets etc. with capacities viz. TPH, Kcal/hr, MT/hr, KVA etc.

Existing & Proposed

-

Sr. no.	Source of emission With Capacity	Stack Height (meter)	Type of Fuel	Quantity of Fuel MT/Day	Type of emissions i.e. Air Pollutants	Air Pollution Control Measures (APCM)
1	Boiler (800 kg) (Existing)	12	PNG	500	Adequate Stack Height	Particulate Matter SOx NOx
2	Hot Air Generator (3 Lacs K cal/Hr) (Existing)	12	PNG	370	Adequate Stack Height	Particulate Matter SOx NOx

ii Process gas i.e. Type of pollutant gases (SO₂, HCl, NH₃, Cl₂, NO_x etc.)

Existing & Proposed

There will be no process gas emission in existing as well as proposed manufacturing activity.

iii **Fugitive emission** details with its mitigation measures.

Fugitive Emission Generation Point

- Raw material handling
- Transfer point
- Loading and unloading of raw material
- Leakage and Spillage

Mitigation Measure for control of Fugitive Emission

- Regular maintenance of valves, pumps and other equipment to prevent leakage and thus minimize the fugitive emissions of VOCs.
- Entire process is carried out in the closed reactors with proper maintenance of pressure and

temperature.

- Regular periodic monitoring of work area to check the fugitive emission.
- Concrete rods will make to reduce the fugitive emission. Water sprinkler will be provided to reduce dusting from road transportation.
- To reduce the pollutant emission during transportation, the unit will unsure check up and maintenance of vehicular engines for complete combustion of the fuel by the transporter.
- Raw material loading & unloading will be done in cover area.
- Plantation will be done around the project area and along the roads.

F Hazardous waste

(as per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

Existing & Proposed

I

Sr.	Type/Name	Specific	Category		Quantity		Management of	
no.	of	Source of and		(MT/Annum)			HW	
	Hazardous	generation	Schedule					
	waste	(Name of	as per	Existing	Proposed	Total		
		the	HW					
		Activity,	Rules.					
		Product						
		etc.)						
1	ETP Waste	ETP	35.3	0.25	0.65	0.9	Collection, Storage, Transportation Disposal at TSDF site approved by Board.	
2	Used Oil	Plant Machinery	5.1	15 Lit	5 Lit	20 Lit	Collection, Storage, Transportation &Disposal by selling to registered refiners/Used as lubricant in Plant & Machineries.	
3	Discarded Drums, Barrels	Production/ Raw Material Section	33.1	6	24	30	Collection, Storage Decontamination, Transportation &Disposal by selling to authorized recycler	

		-						
Ī	ii	Membership details of TSDF, CHWIF etc.	TSDF site - Eco Care Infrastructure Limited.					
		(For HW management)						
	iii	Details of Non-Hazardous waste & its	No generation of Non-Hazardous waste.					
		disposal(MSW and others)						
	G	Solvent management, VOC emissions etc.						
Ī	i	Types of solvents, Details of Solvent recovery, % recovery. reuse of recovered Solvents						
		➤ No Solvent will be use in existing as well as proposed manufacturing activity.						
Ī	ii	VOC emission sources and its mitigation measures						
ŀ		> We will measure VOC level in our manufacturing unit as well as Raw Material Storage area we						
		will also do work place monitoring & according implementation.						
L								

- Technical presentation was made by the project proponent during SEAC meeting dated 06/02/2019.
- Committee deliberated on compliance status of existing project, water balance, HW management, safety aspects etc.
- Committee asked about compliance of existing plant and any legal action taken against unit, PP informed that CCA compliance report submitted by the unit. PP informed that old unit namely M/s Deepwin Dyestuff purchased by unit and also name changed in existing plant by the unit in CCA order. No legal action taken against unit. PP addressed area adequacy, green belt, new proposed products water and waste water management in length. Committee asked about existing and proposed waste water quality to CETP, PP satisfactorily addressed about it.
- Committee noted that for proposed expansion, waste water discharge to CETP is as per CCA and PP is sending their proposed waste water to common spray dryer of M/s Chhatral Enviro Management System Pvt. Ltd, Chhatral.
- Considering the above project details, after detailed discussion, the terms of reference (ToR) were prescribed as below and as per the standard TOR for the Synthetic Organic Chemical projects recommended by SEAC vide letter no. EIA-10-GEN-21/1480 dated 14/09/2017 and approved by SEIAA in its 12th meeting dated 16/09/2017 for the EIA study to be done covering **10 Km** radial distance from the project boundary.
 - 1. Adequacy of proposed area with respect to plant machineries, EMS, green belt, safety aspect, raw material & product storage considering worst case scenario. Submit proper lay out plan clearly demarcating all activities with scale.
 - 2. Compliance of MoEFCC's OM dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER). Fund allocation for Corporate Environment Responsibility (CER) shall be made as per MoEFCC's O.M. No. 22-65/2017-IA.III dated 01/05/2018 for various activities

- therein. The details of fund allocation and activities for CER shall be incorporated in EIA/EMP report.
- 3. Details with respect to justification for proposed expansion: (1) To address proportionate availability of space for production plant. (2) To address proportionate availability of storage area for raw materials finished goods, utilities and goods carrier movement within premises. (3) To address proportionate captive/common infrastructure available to accommodate additional load due to proposed expansion. (4) Environment impact and its mitigation measures for common/ captive infrastructure due to proposed production.
- 4. Explore the use of renewable energy to the maximum extent possible. Details of provisions to make the project energy-efficient through of energy efficient devices and adoption of modes of alternative eco-friendly sources of energy like solar water heater, solar lighting etc. Measures proposed for energy conservation.
- 5. Leak Detection and Repairing Programme (LDAR) for all the volatile organic solvent proposed for use in-house with detailed chemical properties including vapour pressure. LDAR shall endeavour prevention of losses of solvents to the best minimum extent.
- 6. Qualitative and quantitative analysis of hazardous waste streams generation from the manufacturing process (Product wise). Explore the possibility to reuse such waste streams within premises as raw materials for other products or to convert it into valuable products instead of selling out side. Sound management of such waste streams as per the HW Rules 2016 as amended time to time. Feasibility report for utilization shall be incorporated in EIA report.
- Justification regarding quality of existing waste water and proposed waste water which is sending to CETP as per CETP norms.
- 8. Certified Compliance Report (CCR) from the concern authority as per the MoEFCC's Circular no. J-11011/618/2010- IA (II) (I) dated 30/05/2012 and Circular no. J-11013/6/2010-IA-II (Part) vide dated 07/09/2017.
- The TOR prescribed as above and as per the standard TOR approved by SEIAA and the model ToRs available in the MoEFCC's sector specific EIA Manual for 'Synthetic Organic Chemical Industry' shall be considered as generic TORs for preparation of the EIA report in addition to all the relevant information as per the generic structure of EIA given in Appendix III in the EIA Notification, 2006. The project proponent shall have to apply for Environmental clearance through online portal http://environmentclearance.nic.in/ along with final EIA report.

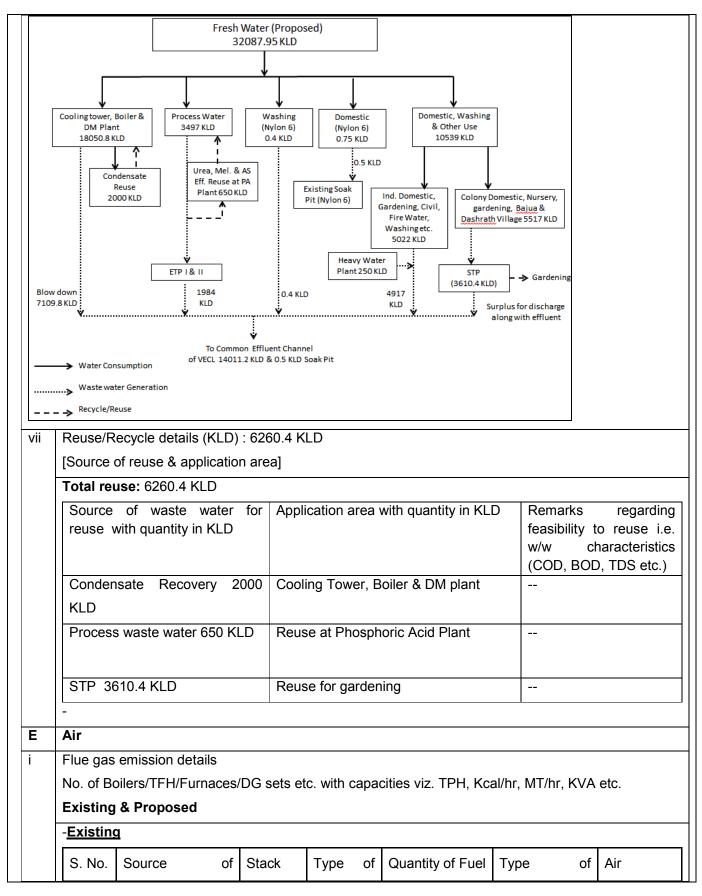
17.	SIA/GJ/IND2/30757/2019	M/s: Gujarat State Fertilizers	Screening and scoping
		And Chemicals Ltd, P.O.	
		Fertilizernagar-391750, Tal. &	
		Dist. Vadodara	

Category of the unit: 5(e)

Status of the project: Expansion

• This office has received an application vide their online proposal no. SIA/GJ/IND2/30757/2019 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.

 This is an existing unit engaged in organic chemicals and now proposes for expansion of synthetic organic chemical products i.e. petrochemical based processing as tabulated below:


Sr. no.	Name of the Products	CAS no. /	Quantity MT/Mont	h		End-use of the products
110.	Froducts	CI no. Existing Proposed	Total			
1	Nylon-6 Chips	25038- 54-4	2035.4	1735	3770.4	Automobile, Electrical, textile, Hardware etc
	Total		2035.4	1735	3770.4	

- The project falls under Category B of project activity 5(e) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 06/02/2019.
- The project proponent along with their expert /consultant M/s. Eco Chem Sales & Services, Surat attended the meeting and made presentation before the committee.
- Salient features of the project are as under:

Sr.	Particulars	Details			
A	Total cost of Proposed	Proposed:Rs. 20 Cr.			
	Project				
	(Rs. in Crores):				
В	Total Plot area	Existing: 3280000 Sq. m.			
	(sq. meter)	Proposed: 0 Sq. m.			
		Total: 3280000 Sq. m.			
	Green belt area	Existing: 1187000 Sq. m.			
	(sq. meter)	Proposed: 0 Sq. m.			
		Total: 1187000Sq. m.			
С	Employment generation	Existing: 5000 Nos			
		Proposed: 19 Nos			
		Total:5019 Nos			
D	Water				
i	Source of Water Supply	Water source: French Well (4 Nos.) in Mahi River (GSFC's own			
	(GIDC Bore well, Surface	source).			

	water, Tanker supply	y etc)								
	Status of permission	from	Permi	ission for	the v	water withd	rawal	has already beir	ng obtained vid	
	the concern authorit	y.	letter	No.: VID/	PB-2	/IND/REQ.2	2018-	19/GSFC/853, dat	ed 21/03/2018	
ii	Water consumption	Water consumption (KLD)								
		Existi KLD	ng	Propose (Addition KLD		Total a Expansion KLD	after n	Remarks		
	Domestic			0.75						
	Gardening	10	539	0		10539.7	75			
			Industi	rial						
	Process	34	77	20		3497				
	Washing	(0 0.4			0.4		Exiting project washing included in (A) & (B)		
	Boiler			15.8		10050	0			
	Cooling	180	3035			18050.8				
	Others	(0	0		0				
	Industrial Total	21	512	36.2		21548.	2			
	Grand Total (A+B+C)	320	051	36.95	5	32087.9)5			
	23) Quantity rec	22) Total water requirement for the project:32087.95KLD 23) Quantity recycled: 6260.4KLD (Includes Condensate, Process Effluent & STP for gardening) 24) Total fresh water requirement: 32087.95KLD								
ii	Waste water gener	ation (K	LD)							
	Category	Existing KLD		oposed dditional) D	Tota Exp KLE	ansion	Ren	narks		
	Domestic 49				A017.5		Iditional sewage will be sent in sting Soak pit of Nylon 6 Plant			
		Ind	dustrial							

	Process	1964	20	1984	Existing to ETP 1 & 2 and Additional to ETP 1			
	Washing	0	0.4	0.4	Existing Washing included in Pont No. (A)			
	Boiler	7400	4.0	7400.0	W			
	Cooling	7108	1.8	7109.8	Will be sent to VECL			
	Others	0	0	0	-			
	Total Industrial waste water	9072	22.2	9094.2				
	Total	13989	22.7	14011.7				
iv	Treatment facility w	ithin premis	es with capaci	ty [For existin	g and Proposed]	•		
	[In-house ETP (Prir	mary, Secon	dary, Tertiary)	, MEE, Stripper,	Spray Dryer, STP etc			
	➤ ETP-I of 88	0 KLD provid	ded to treat wa	ste water gener	ated from proposed proje	ect		
	ETP-I of 880 KLD provided to treat waste water generated from proposed project							
٧	Mode of Disposal 8	k Final meeti	ng point					
V	Treated waste wate Channel Limited)		0.	o Common Efflu	uent Channel of VECL (\	/adodara Enviro		
V	Treated waste wate	er from the E	ETP are sent to		ent Channel of VECL (\ ent to existing Soak pit o			
V	Treated waste wate Channel Limited)	er from the E	ETP are sent to	e water will be se		f Nylon 6 plant		
v	Treated waste wate Channel Limited) Domestic:	er from the E	ETP are sent to	water will be se	ent to existing Soak pit o	f Nylon 6 plant e sent to ETP-l		
v	Treated waste wate Channel Limited) Domestic:	er from the E	ETP are sent to comestic waste the waste wate and treated was	e water will be se er from the proc ste water is furth	ent to existing Soak pit or cess and washing will b	f Nylon 6 plant e sent to ETP-l uent Channel of		
V	Treated waste wate Channel Limited) Domestic:	er from the E	ETP are sent to comestic waste the waste wate and treated was	e water will be seen from the proceste water is further a Enviro Char	ent to existing Soak pit or cess and washing will b ner sent to Common Effl	f Nylon 6 plant e sent to ETP-l uent Channel of		
V	Treated waste wate Channel Limited) Domestic: Industrial:	er from the E	oomestic waste he waste wate nd treated was ECL (Vadoda own is sent to	e water will be seen from the proceste water is further a Enviro Charvect.	ent to existing Soak pit or cess and washing will b ner sent to Common Effl	f Nylon 6 plant e sent to ETP- uent Channel of ling tower blow		
	Treated waste wate Channel Limited) Domestic: Industrial:	T a V do n facility (CF)	oomestic waste he waste wate nd treated was ECL (Vadoda own is sent to	e water will be seen from the proceste water is further a Enviro Charvect.	ent to existing Soak pit or cess and washing will b ner sent to Common Effl nnel Limited). The Coo	f Nylon 6 plant e sent to ETP-l uent Channel of ling tower blow		
	Treated waste wate Channel Limited) Domestic: Industrial: In case of Common Name of Common	T a V do facility (CF)	Domestic wastend treated was each (Vadoda own is sent to	e water will be seen from the proceste water is further a Enviro Char VECL.	ent to existing Soak pit or cess and washing will b ner sent to Common Effl nnel Limited). The Coo	f Nylon 6 plant e sent to ETP-l uent Channel of ling tower blow		
	Treated waste wate Channel Limited) Domestic: Industrial: In case of Common Name of Common Effective Common Effective Channel Limited)	T a V do facility (CF) facility	Domestic wasternd treated was ECL (Vadoda own is sent to b) like CETP, Conel of VECL (Vanished of VECL	e water will be seen from the proceste water is further a Enviro Char VECL. Tommon Spray decorated and the common of the common	ent to existing Soak pit of class and washing will be the sent to Common Efflonnel Limited). The Cooryer, Common MEE, CH	f Nylon 6 plant e sent to ETP- uent Channel of ling tower blow WIF etc.		
	Treated waste wate Channel Limited) Domestic: Industrial: In case of Common Name of Common Et Membership of Cor	T a V do facility ffluent Changement facility	Domestic wasternd treated was ECL (Vadoda own is sent to b) like CETP, Conel of VECL (Vanished of VECL	e water will be seen from the proceste water is further a Enviro Char VECL. Tommon Spray decorated and the common of the common	ent to existing Soak pit or cess and washing will b ner sent to Common Effl nnel Limited). The Coo	f Nylon 6 plant e sent to ETP-I uent Channel of ling tower blow WIF etc.		
	Treated waste wate Channel Limited) Domestic: Industrial: In case of Common Name of Common Ed Membership of Cor (For waste water to the Channel Limited)	T a V do facility (CF) facility ffluent Chance mmon facility (reatment)	pomestic waste the waste wate and treated waste countries to like CETP, Countries of VECL (Var) (CF): Certification	e water will be seen from the processe water is further a Enviro Charvect. WECL. Tommon Spray decommon Spray	cess and washing will be ner sent to Common Efflornel Limited). The Cooryer, Common MEE, CH Channel Limited). 3/2018-19, dated 01/04/	f Nylon 6 plant e sent to ETP-luent Channel of ling tower blow WIF etc.		
	Treated waste wate Channel Limited) Domestic: Industrial: In case of Common Name of Common Et Membership of Cor (For waste water to Treated waste water)	T a V do facility (CF) facility ffluent Chance mmon facility (reatment)	pomestic waste the waste wate and treated waste countries to like CETP, Countries of VECL (Var) (CF): Certification	e water will be seen from the processe water is further a Enviro Charvect. WECL. Tommon Spray decommon Spray	ent to existing Soak pit of class and washing will be the sent to Common Efflonnel Limited). The Cooryer, Common MEE, CH	f Nylon 6 plant e sent to ETP-l uent Channel of ling tower blow WIF etc.		
	Treated waste wate Channel Limited) Domestic: Industrial: In case of Common Name of Common Ed Membership of Cor (For waste water to the Channel Limited)	T a V do facility (CF) facility (Fluent Chanimon facility (reatment) er is further s	Domestic wasterness wa	e water will be seen from the proceste water is further a Enviro Chara VECL. Tommon Spray de adodara Enviro ate No.: VECL/1	ent to existing Soak pit of class and washing will be the sent to Common Efflornel Limited). The Cooryer, Common MEE, CH Channel Limited). 3/2018-19, dated 01/04/	f Nylon 6 plant e sent to ETP-l uent Channel of ling tower blow WIF etc.		

		emission With Capacity	Height (meter)	Fuel		emissions i.e. Air Pollutants	Pollution Control
							Measures
	1	Reformer (Furnace)	33	NG	5150 Nm ³ /hr for methanol		
		NG Preheater	18		231 Nm³/hr		
	2	Reformer (Furnace)	1 30 1 NG		1071 Nm ³ /hr	$PM,SO_2,$	
		NG Preheater	30	NG	91.9 Nm³/hr	NO _x	
		Reforming Section-100	52	100 % Naphtha	46830 Nm ³ /hr		
		Coulon 100		100 % NG	32520 Nm ³ /hr		
	3	Syn. Unit-500	30	PG	2121 Nm³/hr		
		CRG Unit-900	30	CRG/NG	2088/1110 Nm³/hr	NO _x	Not Applicable
		CRG Unit-900	30	NG	329 Nm³/hr	IVΟχ	
		Pre- desulphurization	-	TG/NG	1346.5/1445.5 Nm³/hr		
	4	Salt furnace	ılt furnace 30 N		300 Nm³/hr		
	5	Salt furnace	35	NG	450 Nm³/hr		
	6	Boiler 4 & 5	30	NG +	NG 3760 Nm³/hr		
		Doller 4 & 3	30	LSHS	LSHS 3.92 T/HR (each)		
	7	Boiler	70	NG +	NG 8350 Nm³/hr	PM, SO ₂ ,NO _x	
	,	Doller	70	LSHS	LSHS 8.74 T/HR		
	8	Boiler	70	NG + LSHS	и		
	9	Boiler	35	NG	8570 Nm ³ /hr		
	10	Waste liquor unit	22	НС	WL-I:4395 KG/HR WL-II : 405 Kg/hr		
	11	IWI Unit	40	НС	5623 Kg/hr OFF GASES 2000 Nm³/hr+2679 Kg/hr	PM, SO ₂ ,NO _x	

There will be no flue gas emission from Proposed project.									
			Proposed I	lue Gas					
12	New Boiler	70	LSHS	LSHS: 3.36 T/hr					
		70	NG +	NG: 3580 Nm³/hr					

Process gas i.e. Type of pollutant gases (SO₂, HCl, NH₃, Cl₂, NO_x etc.)

Existing & Proposed

S. Specific Source of emission No. (Name of the Product & Process)		Type of emission	Stack/Vent height (meter)	Air Pollution Control Measures (APCM)
1	Prilling Tower	SPM NH₃	38	Water Scrubber
2	Prilling Tower	SPM NH₃	70	Water Scrubber
3	Condenser oxidation column	NH ₃	38	H₂SO₄ Scrubber (Eff. 99.5%)
4	Dryer Outlet	SPM NH₃	15	Filter
5	Dryer Outlet	SPM NH₃	17	Filter
6	Rock grinding	SPM	30	Ventury Scrubber
7	Digester	F	20	Fume scrubber
8	Dryer & Dust Scrubber A&B	NH₃ SPM, F	30	Cyclone separator &Ventury scrubber
9	Granulator & Neutralization	NH ₃ , F	25	Fume Scrubber
10	Dryer	SPM	19.2	Cyclone Separator
11	Final Absorption	SO ₂	52	Final Absorption
	Tower	Acid		Tower
12	Final Absorption	SO ₂	100	Final Absorption tower
	Tower	Acid		

			Mist				
		D-415-3	SO ₂		_		
	13	Tower O/L	NH ₃	25	Scrubber		
		D-414-3	NOx				
	14	Tower O/L	NH ₃	25	De Nox unit		
	15	AS Dryer	SPM	30	Cyclone Separator & Scrubber		
	16	AS Vent Scrubber	SO ₂ NH ₃	30	Scrubber		
	17	Process Vessels	PM	30	Scrubber		
	18	Crusher, Hopper, Mixers	PM	40	Bag Filter		
	•	Proposed P	rocess Gas Emi	ssion	•		
		There will be no Process	gas emission fron	n Proposed pr	oject.		
iii Fugitive emission details with its mitigation measures.							

None envisaged for proposed project

F Hazardous waste

(As per the Hazardous and Other Wastes (Management and Transboundary Movement) Rules 2016.

Existing & Proposed

i	Sr. No Type/Name of Hazardous waste Specific Source of generation (Name of the Activity, Product etc.)		Category and Schedule as per HW Rules.	Quantity (MTPA)	Management of HW	
				Existing		
	1	ETP Sludge				
	а	Biological sludge	Biological treatment of effluent	-		Sell to Farmer as a soil conditioner
	b	Chemical sludge	Chemical treatment of effluent & cleaning of collection tanks	34.3	40 MTPA	Collection, Storage, Transportation & Disposal at TSDF site i.e. NECL
	2	Used Oil	Various existing Plants	5.1	125 MTPA	Collection, Storage, Transportation & Disposal by selling to registered refiners

					-				
	3	Discarded Container	Va	arious existing Plants	33.3	180 MTPA	Collection, Storage, Decontamination within factory Premise		
	4	Spent Catalyst	Vá	arious existing Plants	17.2	35 MTPA	Collection, Storage, Transportation & Disposal by selling to registered recyclers or disposal at TSDF site i.e. NECL		
	5 Spent Vari Catalyst		arious existing Plants	18.1	115 MTPA	Collection, Storage, Transportation & Disposal by selling to registered recyclers			
	6	Organic Waste		m F & I groups cleaning activity	1.4	20 MTPA	Collection, Storage, Transportation & Disposal at Incineration Facility.		
	II / I Sillaniir Milick I			ration of molten hur at SA plants	17.1	350 MTPA	Collection, Storage, reuse &/or Transportation and Disposal at TSDF site		
				Proposed					
	1	Used Oil	Va	arious existing Plants	5.1	0.3 MTPA	Collection, Storage, Transportation & Disposal by selling to registered refiners		
ii	Memb	ership details of		Not Applicable f	or proposed pro	ject as no suc	ch waste will be generated		
	TSDF,	CHWIF etc.		which requires of	lisposal at TSDF	/ CHWIF.			
	(For H	IW management	t)						
iii	Details	s of Non-Hazardo	ous	NA					
	waste	& its disposal(MS	SW						
	and ot	hers)							
G	Solve	nt management	, VOC	emissions etc.					
	Not Applicable for propose project								
i	Types	of solvents, Deta	ails of	Solvent recovery	, % recovery. re	euse of recove	ered Solvents		
	>	Not Applicable f	or pro	pposed project					
ii	VOC 6	emission source	s and	its mitigation mea	asures				
	>	Not Applicable f	or pro	posed project					

Technical presentation was made by the project proponent during SEAC meeting dated 06/02/2019. Committee deliberated on compliance status of existing project, water balance, HW management, safety

aspects etc.

Committee deliberated EC conditions compliance verification report of RO Bhopal in length. Committee asked about legal action taken against unit by Board and CPCB letter regarding online monitoring system, PP satisfactorily addressed about it. Committee asked about Public hearing exemption for proposed project, PP submitted Notification letter regarding exemption of public hearing for GSFC plant during meeting. Committeee asked about oligomer waste generated from proposed project or not, PP informed that oligomer waste is not generated from proposed Nylon – 6 chip products. PP addressed area adequacy, green belt, new proposed products water and waste water management in length. Committee asked about waste water generation quantity, PP satisfactorily addressed about it.

The project proponent presented that they have already completed baseline environmental monitoring in Summer 2018 and requested to allow them to use the same for the preparation of the EIA report which was agreed to by the committee.

Considering the above project details, after detailed discussion, the terms of reference (ToR) were prescribed as below and as per the standard TOR for the Synthetic Organic Chemical projects recommended by SEAC vide letter no. EIA-10-GEN-21/1480 dated 14/09/2017 and approved by SEIAA in its 12th meeting dated 16/09/2017 for the EIA study to be done covering 5 Km radial distance from the project boundary.

- 1. <u>Executive summary of the project</u> giving a prima facie idea of the objectives of the proposal, use of resources, justification, etc. In addition, it should provide a compilation of EIA report, including EMP and the post-project monitoring plan in brief.
- 2. Copy of plot holding certificate obtained from GIDC Authority. (If applicable)
- 3. Present land use pattern of the study area shall be given based on satellite imagery.
- 4. Layout plan of the factory premises. (Show all the production plants including Raw material & Products storage area). Provision of separate entry & exit and adequate margin all-round the periphery for unobstructed easy movement of the emergency vehicle / fire tenders without reversing back. Mark the same in the plant layout.
- 5. Technical details of the plant/s along with details on best available technologies (BAT), proposed technology and reasons for selecting the same.
- 6. Details of manufacturing process / operations of each product along with chemical reactions, mass balance, consumption of raw materials etc. Details on strategy for the implementation of cleaner production activities.
- 7. Full name and chemical formula of all the raw materials and products. Details on end use of each product.
- 8. Complete management plan for By-products/Spent acids to be generated, along with the name and address of end consumers to whom the by-product/s will be sold. Copies of agreement / MoU / letter of intent from them, showing their willingness to purchase said by-products/Spent acids from the proposed project.
- 9. Explore the use of renewable energy to the maximum extent possible. Details of provisions to make the project energy-efficient through of energy efficient devices and adoption of modes of alternative ecofriendly sources of energy like solar water heater, solar lighting etc. Measures proposed for energy conservation.

- 10. Leak Detection and Repairing Programme (LDAR) for all the volatile organic solvent proposed for use in-house with detailed chemical properties including vapor pressure. LDAR shall endeavour prevention of losses of solvents to the best minimum extent.
- 11. Qualitative and quantitative analysis of hazardous waste streams generation from the manufacturing process (Product wise). Explore the possibility to reuse such waste streams within premises as raw materials for other products or to convert it into valuable products instead of selling out side. Sound management of such waste streams as per the HW Rules 2016 as amended time to time. Feasibility report for utilization shall be incorporated in EIA report.
- 12. Action plan to reuse or consume entire quantity of spent acids/waste streams within premises to convert into valuable products instead of sending such spent acids to outside premises.
- 13. Detailed mass balance and water balance (including reuse-recycle, if any) along with qualitative and quantitative analysis of the each waste stream from the processes.
- 14. Assessment of source of the water supply with adequacy of the same to meet with the requirements for the project. Permission obtained from the GIDC for supply of raw water. Undertaking stating that no bore well shall be dug within the premises.
- 15. Explore the possibility of reuse / recycle and other cleaner production options for reduction of wastes. Details of methods to be adopted for the water conservation.
- 16. Qualitative and quantitative analysis of waste water to be generated from the manufacturing process of each product to be manufactured along with mass balance.
- 17. Segregation of waste streams and details on specific treatment and disposal of each stream.
- 18. Details of ETP including dimensions of each unit along with schematic flow diagram. Inlet, transitional and treated effluent qualities with specific efficiency of each treatment unit in reduction in respect of all concerned/regulated environmental parameters. Inlet effluent quality should be based on worst case scenario considering production of most polluting products that can be manufactured in the plant concurrently.
- 19. Undertaking stating that a separate electric meter will be provided for the ETP system.
- 20. Copy of permission letter with quantity from the authority of GIDC drainage network, Dahej regarding confirmation for spare capacity available to take additional effluent load in GIDC drainage for final disposal to deep Sea.
- 21. Proposal to provide and maintain separate electric meter, operational logbook for effluent treatment systems, online meters for monitoring of flow, pH, TOC/COD, etc.
- 22. Application wise break-up of effluent quantity to be recycled / reused in various applications like sprinkling for dust control and green belt development etc. In case of land application, details on availability of sufficient open land for utilizing effluent for plantation / gardening. How it will be ensured that treated effluent won't flow outside the premises linked with storm water during high rainy days.
- 23. Plans for management, collection and disposal of waste streams to be generated from spillage, leakages, vessel washing, used container washing etc. Measures proposed for preventing effluent discharge during unforeseen circumstances.
- 24. One season Site-specific micro-meteorological data using temperature, relative humidity, hourly wind speed and direction and rainfall should be incorporated.
- 25. Anticipated environmental impacts due to the proposed project/production may be evaluated for significance and based on corresponding likely impacts VECs (Valued Environmental Components) may be identified. Baseline studies may be conducted within the study area of 5 km for all the concerned/identified VECs and likely impacts will have to be assessed for their magnitude in order to

identify mitigation measures.

- 26. One complete season base line ambient air quality data (except monsoon) to be given along with the dates of monitoring. The parameters to be covered shall be in accordance with the revised National Ambient Air Quality Standards as well as project specific parameters. Locations of the monitoring stations should be so decided so as to take into consideration the pre-dominant downwind direction, population zone and sensitive receptors. There should be at least one monitoring station in the upwind direction. There should be at least one monitoring station in the pre dominant downwind direction at a location where maximum ground level concentration is likely to occur.
- 27. Modeling indicating the likely impact on ambient air quality due to proposed activities. The details of model used and input parameters used for modeling should be provided. The air quality contours may be shown on location map clearly indicating the location of sensitive receptors, if any, and the habitation. The wind rose showing pre-dominant wind direction should also be indicated on the map. Impact due to vehicular movement shall also be included into the prediction using suitable model. Results of Air dispersion modeling should be superimposed on satellite Image / geographical area map.
- 28. Base linestatus of the noise environment, impact of noise on present environment due to the project and proposed measures for noise reduction including engineering controls.
- 29. Specific details of (i) Process gas emission from each unit process with its quantification, (ii) Air pollution Control Measures proposed for process gas emission, (iii) Adequacy of the air pollution control measures for process gas emission, measures to achieve the GPCB norms (iv) Details of the utilities required (v) Type and quantity of fuel to be used for each utility (vi) Flue gas emission rate from each utility (vii) Air Pollution Control Measures proposed to each of the utility along with its adequacy (viii) List the sources of fugitive emission along with its quantification and proposed measures to control it.
- 30. Details on management of the hazardous wastes to be generated from the project stating detail of storage area for each type of waste, its handling, its utilization and disposal etc. How the manual handling of the hazardous wastes will be minimized. Methodology of de-contamination and disposal of discarded containers and its record keeping.
- 31. Membership of Common Environmental Infrastructure including the TSDF / Common Incineration Facility, if any.
- 32. Name and quantity of each type of solvents to be used for proposed production. Details of solvent recovery system including mass balance, solvent loss, recovery efficiency feasibility of reusing the recovered solvents etc. for each type of solvent.
- 33. A detailed EMP including the protection and mitigation measures for impact on human health and environment as well as detailed monitoring plan and environmental management cell proposed for implementation and monitoring of EMP. The EMP should also include the concept of waste-minimization, recycle/reuse/recover techniques, energy conservation, and natural resource conservation. Total capital cost and recurring cost/annum earmarked for environment pollution control measures.
- 34. Permission from PESO, Nagpur for storage of solvents, other toxic chemicals, if any.
- 35. Occupational health impacts on the workers and mitigation measures proposed to avoid the human health hazards along with the personal protective equipment to be provided. Provision of industrial hygienist and monitoring of the occupational injury to workers as well as impact on the workers. Plan for periodic medical checkup of the workers exposed. Details of work place ambient air quality

- monitoring plan as per Gujarat Factories Rules.
- 36. Details on volatile organic compounds (VOCs) from the plant operations and occupational safety and health protection measures.
- 37. Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios should be carried out. The worst-case scenario should take into account the maximum inventory of storage at site at any point of time. The risk contours should be plotted on the plant layout map clearly showing which of the facilities would be affected in case of an accident taking place. Based on the same, proposed safeguard measures including On-Site / Off-Site Emergency Plan should be provided.
- 38. MSDS of all the products and raw materials.
- 39. Details of hazardous characteristics and toxicity of raw materials and products to be handled and the control measures proposed to ensure safety and avoid the human health impacts. This shall include the details of Antidotes also.
- 40. Details of quantity of each hazardous chemical (including solvents) tobe stored, Material of Construction of major hazardous chemical storage tanks, dyke details, threshold storage quantity asper schedules of the Manufacture, Storage & Import of Hazardous Chemicals Rules of major hazardous chemicals, size of the biggest storage tank to be provided for each raw material & product etc. How the manual handling of the hazardous chemicals will be minimized?
- 41. Details of the separate isolated storage area for flammable chemicals. Details of flame proof electrical fittings, DCP extinguishers and other safety measures proposed. Detailed fire control plan for flammable substances and processes showing hydrant pipeline network, provision of DG Sets, fire pumps, jockey pump, toxic gas detectors etc.
- 42. Submit checklist in the form of Do's & Don'ts of preventive maintenance, strengthening of HSE, manufacturing utility staff for safety related measures.
- 43. Detailed five year greenbelt development program including annual budget, types & number of trees to be planted, area under green belt development [with map], budgetary outlay; along with commitment of the management to carry out the tree plantation activities outside the premises at appropriate places in the nearby areas and elsewhere.
- 44. Detailed socio-economic development measures including community welfare program most useful in the project area for the overall improvement of the environment. Submit a detailed plan for social corporate responsibilities, with appropriate budgetary provisions for the next five years and activities proposed to be carried out; specific to the current demographic status of the area.
- 45. Compliance of MoEFCC's OM dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER). Fund allocation for Corporate Environment Responsibility (CER) shall be made as per MoEFCC's O.M. No. 22-65/2017-IA.III dated 01/05/2018 for various activities therein. The details of fund allocation and activities for CER shall be incorporated in EIA/EMP report.
- 46. (a) Does the company have a well laid down Environment Policy approved by its Board of Directors? If so, it may be detailed in the EIA report. (b). Does the Environment Policy prescribe for standard operating process / procedures to bring into focus any infringement / deviation / violation of the environmental or forest norms / conditions ? If so, it may be detailed in the EIA.
- 47. What is the hierarchical system or administrative order of the company to deal with the environmental issues and for ensuring compliance with the EC conditions. Details of this system may be given.
- 48. Records of any legal breach of Environmental laws i.e. details of show- cause notices, closure notices etc. served by the GPCB to the existing unit in last five years and actions taken then after for

- prevention of pollution.
- 49. Copies of Environmental Clearances obtained for the existing plant, its point wise compliance report.
- 50. Certified Compliance Report (CCR) from the concern authority as per the MoEFCC's Circular no. J-11011/618/2010- IA (II) (I) dated 30/05/2012 and Circular no. J-11013/6/2010-IA-II (Part) vide dated 07/09/2017.
- 51. Does the company have a system of reporting of non-compliances / violations of environmental norms to the Board of Directors of the company and / or shareholders or stakeholders at large? This reporting mechanism should be detailed in the EIA Report.
- 52. Phase wise project implementation schedule with bar chart and time frame, in terms of site development, infrastructure provision, EMS implementation etc.
- 53. Certificate of accreditation issued by the NABET, QCI to the environmental consultant should be incorporated in the EIA Report.
- 54. A tabular chart with index for point-wise compliance of above TORs.

The above mentioned project specific TORs/additional TORs and the model TORs available in the MoEFCC's sector specific EIA Manual for 'Petrochemical based processing Industry' shall be considered as generic TORs for preparation of the EIA report in addition to all the relevant information as per the generic structure of EIA given in Appendix III in the EIA Notification, 2006.

The project proponent shall have to apply for Environmental clearance through online portal http://environmentclearance.nic.in/ along with final EIA report.

Validity of ToR:

- 55. The ToRs prescribed for the project will be valid for a period of three years for submission of EIA & EMP report. ToR will lapse after three years from date of issue.
- 56. The period of validity could be extended for a maximum period of one year provided an application is made by the applicant to the Regulatory Authority, at least three months before the expiry of valid period together with an updated Form-I, based on proper justification and also recommendation of the SEAC.

18.	SIA/GJ/IND2/30595/2019	M/s: Ambuja Intermediates Pvt.	Screening and scoping
		Ltd	
		Plot No. 41, Phase-II, GIDC	
		Estate, Vatva, Dist-Ahmedabad	

Category of the unit: 5(f)

Status of the project: Expansion

- This office has received an application vide their online proposal no. SIA/GJ/IND2/30550/2018 dated 19/01/2019 regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.
- This is an existing unit engaged in organic chemicals and now proposes for expansion of synthetic organic chemical products as tabulated below:

SR.	PRODUCT NAME	Existing	Proposed	Total	End Use	1
NO		MT/Month	MT/Month	MT/Month		ı
	REACTIVE BLACK – 5/B	30	NIL	30	Textile,	ı

2.	REACTIVE BLACK – N150				Colour
3.	REACTIVE BLACK – HFGR				and Dyes
4.	ACID BROWN -14				Industries
5.	ACID BROWN-214	=			
6.	ACID BLACK -172				
7.	ACID BLACK -194	=			
8.	ACID BLACK -234				
9.	ACID BLACK -210				
10.	DIRECT BLACK-80				
11.	NOVACRON YELLOW NC [Ambuja Yellow H-				
	[14]				
12.	MONOAZO TZ 3948 [Ambuja Monoazo H-10				
13.	MONOAZO TZ 2688 [AmbujaMonoazo H-19]				
14.	MONOAZO SR 4420 [AmbujaMonoazo H-8]				
15.	DISAZO ROE 888 [AmbujaDisazo H-15]				
16.	MONOAZO AE 3978 [Ambujamonoazo H-6]				
17.	Acid Brown 75	NIL	90	90	
18.	Direct Black 22				
19.	Formazon Blue FR				
20.	Reactive Blue 49				
21.	Acid Black 10 BX				
	TOTAL	30	90	120	

- The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.
- PP was called for presentation in the SEAC meeting dated 06/02/2019.
- The project proponent along with their expert /consultant M/s. Satva Environ Consultancy attended the meeting and made presentation before the committee
- Salient features of the project are as under:

Sr.	Particulars	Details
no.		
Α	Total cost of Proposed Project	Existing: 0.71 Cr.
	(Rs. in Crores):	Proposed: 1.25 Cr.
		Total:1.59 Cr.
В	Total Plot area	Existing:1422.20 Sq. m.
	(sq. meter)	
	Green belt area	Proposed: 63.72 Sq. m
	(sq. meter)	
С	Employment generation	20
D	Water	
i	Source of Water Supply	GIDC Water
	(GIDC Bore well, Surface water, Tanker supply	
	etc)	

Status of permission from the concern authority.

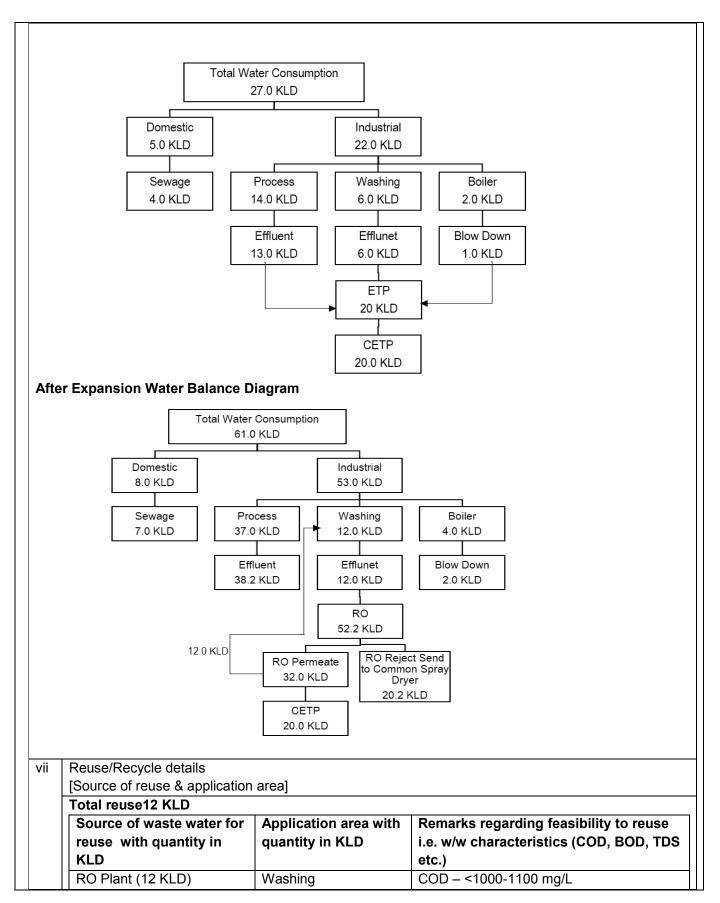
ii Water consumption (KLD)

SrNO	Category	Water Consumption (KL/Day)			
		Existing	Additional	Total	
1	Domestic	5.0	3.0	8.0	
2	Industrial				
	Process	14.0	23.0	37.0	
	Boiler	2.0	2.0	4.0	
	Washing	6.0	6.0	12.0	
	Total Water Consumption (Domestic)	5.0	3.0	8.0	
	Total Water Consumption (Industrial)	22.0	31.0	53.0	

- 25) Total water requirement for the project: 61.0 KLD
- 26) Quantity to be recycle: 12.0 KLD
- 27) Total fresh water requirement: 49.0KLD

iii Waste water generation (KLD)

Sr	Category	Waste Water Generation(KL/Day)			
NO		Existing	Additional	Total	
1	Domestic	4.0	3.0	7.0	
2	Industrial				
	Process	13.0	25.2	38.2	
	Boiler	1.0	1.0	2.0	
	Washing	6.0	6.0	12.0	
	Total Waste Water Generation (Domestic)	4.0	3.0	7.0	
	Total Waste Water Generation (Industrial)	20.0	32.2	52.2	


iv Treatment facility within premises with **capacity [For existing and Proposed]**[In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc..

EXISTING

Sr. No.	Name of Unit	Capacity
1	Collection Tank 2 Nos.	6 m ³ and 10 m ³
2	Neutralization Tank	10 m ³
3	Settling Tank	25 m ³ and 10 m ³
4	Holding Sump	7.5 m ³ and 10 m ³
5	C.E.T.P Overhead Tank	30 m ³
6	Sludge Drying Bed	1.5×1.5 (4 Nos.)

PROPOSED

	Sr. No.	ETP Unit		Capacity	
	1	Equalization cum Neutralization Tan	k	10, 2 Nos.	
	2	Filter Press		36" x 36", 48 plates	
	3	Holding Tank		60 KL	
	4	R. O. System		3,000 LPH	
	5	Permeate (Re-use In Utilities) Holdin	ng Tank	15	
	6	Permeate (CETP discharge) Holding	g Tank	20	
	7	High Concentration (Reject) Effluer Common MEE/Spray Dryer Facilities		20	
٧	Mode of Dis	posal & Final meeting point			
	Domestic:		The generated sew soak pit/septic tank	age will be disposed through .	
	Industrial:				
	• Total 52	2 KLD Waste Water Generation	from Manufacturing	Process and Other Ancillary	
	Operation	n, The unit has propose Treatment in I	ETP Plant followed b	y RO System.	
		permeate @ 32 KLD will be partially g 20 KLD will be discharge to CETP fo	•	e reuse in washing activity and	
	The RO r	eject @ 20.2 KLD will be send to Com	nmon Spray Drier for	further disposal	
Vİ		ommon facility (CF) like CETP, Comnommon facility	non Spray dryer, Co	mmon MEE, CHWIF etc.	
	The Green I	Environment Services Co-op. Soc. Ltd	I. – CETP		
	The Green Environment Services Co-op. Soc. Ltd. – Common Spray Drier				
	The Society of Clean Earth – Common Spray Drier – Common Spray Drier				
	Membership	of Common facility (CF)			
	10: 1:6: :		(For waste water t	•	
vii		water balance diagram with reuse /	recycle of waste w	ater	
Exi	siting				

						TSS- < 10	0 mg/L			
						TDS - <12	00 mg/L			
E :	Air	raa amiaaian dat	oilo							
İ	_	gas emission det f Boilers/TFH/Fu		G sets et	c. with capacities	viz. TPH,	Kcal/hr, MT/hr, k	KVA etc.		
		ing & Proposed				,	, ,			
	Sr. no	Stack attached to	Stack height in meter	Type of Fuel	Consumption	АРСМ	Remarks			
	1	Boiler-1 (1 TPH)	12	PNG	30 SCM/Hr (5 E + 25 P)	Adequat Stack Height	Existing			
	2	Boiler-2 (1 TPH)	12	PNG	30 SCM/Hr (5 E + 25 P)	Adequat Stack Height	Existing			
	3	Hot Air Generator (10 Lac Kcal/Hour)	30	PNG	50 SCM/Hr (12 E + 38 P)	Adequat Stack Height	Existing			
ii										
	Sr	Stack attache		ck heigh	t APC	м	Type of	Remarks		
	no	to		n meter	Cyclone se		Emission	Remarks		
	1.	Spray Dryer (1000 LPH)		30	followed tw water scr	o stage	PM	Existing		
 Fugitive emission details with its mitigation measures. The entire manufacturing activities will be carried out in the closed reactors and regular checking and maintenance of reactors will be carried out to avoid any leakages. The tank vents will be equipped with either a carbon filter or an oil trap to prevent water vapor from entering the tank as it breathes. All the motors of pumps for the handling of hazardous chemicals will be flame proof and provided with suitable mechanical seal with stand-by arrangement Control of all parameters on a continuous basis will be done by adequate control valves, pressure release valves and safety valves etc. All the flange joints of the pipe lines will be covered with flange guards. All the raw materials will be stored in isolated storage area and containers tightly closed. There will also be provision of adequate ventilation system in process plant and hazardous chemical storage area 										
F	(as pe	rdous waste er the Hazardous ing & Proposed		er Waste	s (Management a	and Transb	oundary Movem	nent) Rules 2016		
i	Sr. No	Types of Hazardous Waste	Sources	Categ	ory Existing MT/Year	Additional MT/Year		Disposal		

	1	ETP Sludge	ETP Area	35.3	60.0	20.0	80.0	Collection, storage, Transportation and Dispose to Active TSDF Site
	2	Used Oil	Plant Machinery	5.1	5.0	1.0	6.0	Collection, storage, Reuse within premises or Dispose by Selling to Authorized Re- processors.
	3	Discarded Container	Material Storage and Handling	33.1	12.0	42.0	60.00	Collection, storage, Transportation and Dispose by Selling to Authorized Recycler
ii		bership details HW manageme	•	WIF etc.	Saura	shtra Enviro F	Project Pvt. L	TD.
iii	-	ls of Non-Haza	•	& its	No			
	dispo	sal(MSW and o	others)					
G		ent manageme						
i		s of solvents, D				ry. reuse of re	covered Sol	vents
	<u> </u>							
ii	VOC	emission sour						
	•		_		_	chemicals, solv	_	-
	unloading section, raw material handling and, hazardous waste storage area							
	 The fugitive emissions in terms of handling losses will get reduced by proper storage and handling. 							
	 handling. Hazardous chemicals will be stored as per standard criteria. Periodically monitoring will be 						nonitoring will be	
		carried out as			•		,	ū
	•	All materials	must be store	ed in suitable	e packing to	o prevent conta	amination of	air.
	•	Enclosed sys	tem & efficie	nt procedure	es for mate	rials charging s	shall be ensu	ıred.

- Technical presentation was made by the project proponent during SEAC meeting dated 06/02/2019.
- Committee deliberated on compliance status of existing project, water balance, HW management, safety aspects etc.
- Committee asked about compliance of existing plant and any legal action taken against unit, PP informed that CCA compliance report submitted by the unit. PP informed that one Notice under Water Act"74 issued by Board and compliance of conditions mentioned in Notice submitted by them . PP addressed area adequacy, green belt, new proposed products water and waste water management in length. Committee

asked about existing and proposed waste water quality to CETP, PP satisfactorily addressed about it.

 Committee noted that for proposed expansion, waste water discharge to CETP is as per CCA and PP is sending their proposed waste water to common spray dryer of M/s GSECL, Vatva and common spray dryer of M/s Society for clean earth, Vatva. Committee deliberated on compliance status of existing project, water balance, HW management, safety aspects etc.

Considering the above project details, after detailed discussion, the terms of reference (ToR) were prescribed as below and as per the standard TOR for the Synthetic Organic Chemical projects recommended by SEAC vide letter no. EIA-10-GEN-21/1480 dated 14/09/2017 and approved by SEIAA in its 12th meeting dated 16/09/2017 for the EIA study to be done covering 10 Km radial distance from the project boundary.

- 1. Adequacy of proposed area with respect to plant machineries, EMS, green belt, safety aspect, raw material & product storage considering worst case scenario. Submit proper lay out plan clearly demarcating all activities with scale.
- 2. Compliance of MoEFCC's OM dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER). Fund allocation for Corporate Environment Responsibility (CER) shall be made as per MoEFCC's O.M. No. 22-65/2017-IA.III dated 01/05/2018 for various activities therein. The details of fund allocation and activities for CER shall be incorporated in EIA/EMP report.
- Details with respect to justification for proposed expansion: (1) To address proportionate availability of space for production plant. (2) To address proportionate availability of storage area for raw materials finished goods, utilities and goods carrier movement within premises.
 (3) To address proportionate captive/common infrastructure available to accommodate additional load due to proposed expansion. (4) Environment impact and its mitigation measures for common/ captive infrastructure due to proposed production.
- 4. Explore the use of renewable energy to the maximum extent possible. Details of provisions to make the project energy-efficient through of energy efficient devices and adoption of modes of alternative eco-friendly sources of energy like solar water heater, solar lighting etc. Measures proposed for energy conservation.
- 5. Leak Detection and Repairing Programme (LDAR) for all the volatile organic solvent proposed for use in-house with detailed chemical properties including vapor pressure. LDAR shall endeavour prevention of losses of solvents to the best minimum extent.
- 6. Qualitative and quantitative analysis of hazardous waste streams generation from the manufacturing process (Product wise). Explore the possibility to reuse such waste streams within premises as raw materials for other products or to convert it into valuable products instead of selling out side. Sound management of such waste streams as per the HW Rules 2016 as amended time to time. Feasibility report for utilization shall be incorporated in EIA report.

- 7. Justification regarding quality of existing waste water and proposed waste water which is sending to CETP as per CETP norms.
- The TOR prescribed as above and as per the standard TOR approved by SEIAA and the model ToRs available in the MoEFCC's sector specific EIA Manual for 'Synthetic Organic Chemical Industry' shall be considered as generic TORs for preparation of the EIA report in addition to all the relevant information as per the generic structure of EIA given in Appendix III in the EIA Notification, 2006. The project proponent shall have to apply for Environmental clearance through online portal http://environmentclearance.nic.in/ along with final EIA report.

Meeting ended with thanks to the Chair.

Minutes approved by:

1.	Dr. Dinesh Misra, Chairman, SEAC	
2.	Shri S. C. Srivastav, Vice Chairman, SEAC	
3.	Shri V. N. Patel, Member, SEAC	
4.	Shri. R. J. Shah, Member, SEAC	
6.	Shri A.K. Muley, Member, SEAC	

Minutes of the 480th (A) meeting of the State Level Expert Appraisal Committee held on 06/02/2019 at Committee Room, GEER Foundation, Gandhinagar.

The 480th (A) meeting of the State Level Expert Appraisal Committee (SEAC) was held on 6thFebruary 2019 at Committee Room, GEER foundation, Gandhinagar. Following members attended the meeting:

- 1. Dr. Dinesh Misra, Chairman, SEAC
- Shri S. C. Srivastav, Vice Chairman, SEAC
- 3. Shri V. N. Patel, Member, SEAC
- 4. Shri. R. J. Shah, Member, SEAC
- 5. Shri A.K. Muley, Member, SEAC

The additional agenda of reconsideration for appraisal cases were taken up. The Committee considered the applications made by project proponents, additional details submitted as required by the SEAC/SEIAA and details furnished in the Form-1, PFR, EIA-EMP reports.

1	SIA/GJ/IND2/300	050/2017	M/s. Surya Life Sciences Ltd.	EC – Reconsideration
			Plot No. 3606 & 3616, GIDC Ind. Estate,	
			Ankleshwar, Tal-Ankleshwar, Dist-	
			Bharuch, State: Gujarat.	

Category of the unit : 5(f) Project status: Expansion

Project proponent (PP) has submitted online application vide no. SIA/GJ/IND2/30050/2017 dated 17/01/2019 for obtaining Environmental Clearance.

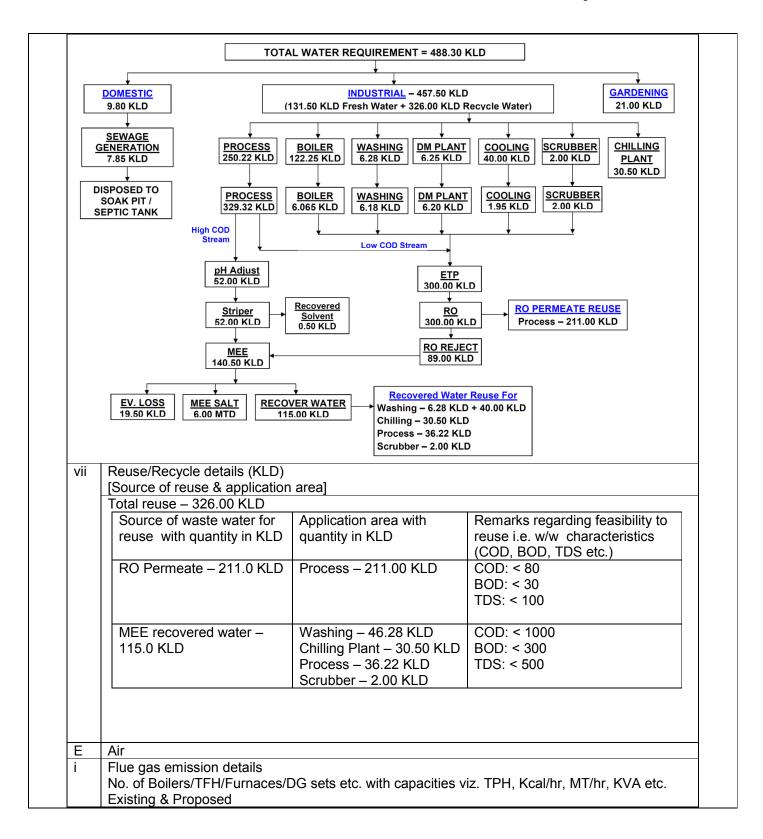
The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide their letter dated 31/07/2018. Project proponent has submitted EIA Report prepared by Earthcare Enviro Solutions Pvt. Ltd. based on the TOR issued by SEIAA.

This is an existing unit engaged in Synthetic organic chemicals and now proposes for expansion as tabulated below:

Sr. no	Name of the Products	CAS no.	Quantity MT/Month			End-use of the products
			Existing	Proposed	Total	
	Meta Bromo Anisole	2398-37-0	05	495		Bulk Dugs Intermediates
	2-Methallyl Acetate	820-71-3				Bulk Dugs Intermediates
	2-Methyl 2-Phenyl Propyl Acetate	18755-52-7				Bulk Dugs Intermediates
	Poly Aluminium Chloride Solution	7446-70-0				Bulk Dugs Intermediates
	Meta Anisidine	536-90-3		500.00	500.00	Bulk Dugs Intermediates
	a, a-Dimethyl-4-[1- oxo-1-cyclopropyl] phenylacetic acid	162096-54- 0]	500.00		Bulk Dugs Intermediates
	Methyl 2-(4-(4- Chlorobutanoyl) Phenyl)-2-Methyl Propanoate (D-9)	154477-54- 0				Bulk Dugs Intermediates

	Meta Bromo Nitro Benzene	585-79-5	Bulk Dugs Intermediates
	4-(2-Methoxy Ethyl)	56718-71-9	Bulk Dugs
	Phenol	307 10-7 1-9	Intermediates
		454477.55	
	Methyl 2-(4-(4-(4-	154477-55-	Bulk Dugs
	(Hydroxyl Diphneyl	1	Intermediates
	Methyl) Piperidin-1-yl)		
	Butanoyl) Phenyl)-2-		
	Methyl Propanoate		
	(D-10)		
	Meta Phenoxy Benzyl	13826-35-2	Bulk Dugs
	Alcohol		Intermediates
	2-(4-hydroxyl-4-(4-	83799-24-0	Bulk Dugs
	hydroxy		Intermediates
	diphneylmethyl)piperi		
	din-1-yl)butyl)phenyl)-		
	2-Methyl propanoic		
	acid (D-12)		
	Benzhydrol	91-01-0	Bulk Dugs
			Intermediates
	4-(Cyclopropyl	162096-54-	Bulk Dugs
	Carbonyl)-A,A-	0	Intermediates
	Dimethylphenyl		
	Acetic Acid		
	CisBomo Benzoate	61397-56-6	Bulk Dugs
			Intermediates
	Imidazole Alcohol	84682-23-5	Bulk Dugs
			Intermediates
	Cis-Tosylate	154003-23-	Bulk Dugs
		3	Intermediates
	Ketoconazole	65277-42-1	Bulk Dugs
			Intermediates
	Benzocaine	94-09-7	Bulk Dugs
			Intermediates
	Meta Bromo Aniline	591-19-5	Bulk Dugs
			Intermediates
	Guaifenesin	93-14-1	Bulk Dugs
			Intermediates
	MannichHCl	15409-60-6	Bulk Dugs
			Intermediates
	Para Amino Benzoic	150-13-0	Bulk Dugs
	Acid		Intermediates
	Meta Amino Benzoic	150-13-0	Bulk Dugs
	Acid		Intermediates
	Metoprolol Base	37350-58-6	Bulk Dugs
			Intermediates
	Metoprolol Tartrate	56392-17-7	Bulk Dugs
	-		Intermediates
	Phenyl Ethyl Methyl	3558-60-9	Bulk Dugs
	Ether		Intermediates
	Azacyclonol	115-46-8	Bulk Dugs
			Intermediates
	Meta Bromo Phenol	591-20-8	Bulk Dugs
			Intermediates
I	I	1	· · · · · · · · · · · · · · · · · · ·

Meta Amino Benzophenone	2835-77-0
Benzyl Alcohol	100-51-6
Ketoprofen	22071-15-4
Ethyl Nitro Benzoate	99-77-4
Para Anisyl Alcohol	105-13-5
BromhexineHCl	611-75-6
Mesalamine	89-57-6
Finofibrate	49562-28-9
Tramadol HCl	36282-47-0
Phenyl Ethyl Alcohol	60-12-8
Para Fluoro Anisole	459-60-9
Nitazoxanide	55981-09-4
Flurbiprofen	5104-49-4
1-[2-(2- hydroxyethoxy)ethyl] piperazine	13349-82-1
Raspberry Ketone	5471-51-2
Meta Amino Acetophenone	99-03-6
Para ChloroBenzophenone	134-85-0
Nitro Chloro Benzoic Acid	96-99-1
Para Hydroxy Benzyl Alcohol	90-05-1
Sucralfate	54182-58-0
Cinnamyl Alcohol	104-54-1
Para Phenoxy Benzyl Alcohol	13826-35-2
2,3 Lutidine	583-61-9
3,5 Lutidine	591-22-0
Carbamezapine	298-46-4
9-hydroxy-9H- fluorene-9-carboxylic acid	467-69-6


Tetra Butyl	99-03-6				Bulk Dugs
Ammonium Bromide					Intermediates
Phenylephrine HCI	61-76-7				Bulk Dugs
					Intermediates
Rosuvastatin Calcium	147098-20-	1			Bulk Dugs
	2				Intermediates
Fluconazole	86386-73-4	1			Bulk Dugs
					Intermediates
Glimepiride HCI	93479-97-1	1			Bulk Dugs
					Intermediates
LidocaineHCI	73-78-9				Bulk Dugs
					Intermediates
Metoprolol Succinate	98418-47-4	1			Bulk Dugs
					Intermediates
Mebendazole	31431-39-7				Bulk Dugs
					Intermediates
Aceclofenac	89796-99-6				Bulk Dugs
					Intermediates
Itraconazole	84625-61-6				Bulk Dugs
					Intermediates
Cinnamaldehyde	14371-10-9				Bulk Dugs
					Intermediates
Allyllsothiocyanate	57-06-7				Bulk Dugs
					Intermediates
Acetohydrazide	1068-57-1				Bulk Dugs
					Intermediates
Benzylidene Acetone	122-57-6				Bulk Dugs
					Intermediates
Amlodipine Besylate	111470-99-				Bulk Dugs
	6				Intermediates
R & D Product					Bulk Dugs
(hydrogenation,			10.00	10.00	Intermediates
bromination etc.)					
Total		5.00	500.00	500.00	
		1	l .		

The project falls underCategory B of project activity 5(f) asper the schedule of EIA Notification 2006. Earlier, PP was called for presentation in the SEAC meeting dated 11/01/2019. Salient features of the project are as under:

Sr	Particulars	Details
n		
0.		
Α	Total cost of Proposed Project	Existing: Rs. 25.0 Crores
	(Rs. in Crores):	Proposed: Rs. 127.10 Crores
		Total: Rs. 152.10 Crores
В	Total Plot area	Existing: 15,650.00 Sq. m.
	(sq. meter)	Proposed:
		Total: 15,650.00 Sq. m.
	Green belt area	Existing: 415.00 Sq. m.
	(sq. meter)	Proposed: 4835.00 Sq. m.
		Total: 5250.00 Sq. m.
С	Employment generation	Existing: 56 (Male- 53 + Female- 03)
		Proposed: 162 (Male- 147 + Female- 15)
		Total: 218 (Male- 200 + Female- 18)

I	Source of Water Supply (GIDC Bore well, Surface water, Tanker supply										
	etc)	Unit has requested to GIDC for additional									
	Status of permission from				DC for a	dditional					
	authority.	\	wate	r requiremen	ι.						
ii	Water consumption (KLD)										
		Eviotina	Dropos	204	Total offer	Rema	rko				
		Existing KLD	Propos (Addition		Total after Expansion	Rema	IKS				
		KLD	KLD	oriai)	KLD						
	Domestic	1.00	8.80		9.80						
	Gardening	1.66	19.34		21.00						
	Industrial	1.00	10.04		21.00						
	Process	0.22	250.00)	250.22						
	Washing	1.28	5.00	<u>′</u>	6.28						
	Boiler	2.25	120.00)	122.25						
	Chilling Plant	0.50	30.00		30.50						
	DM Plant	0.25	6.00		6.25						
	Cooling Tower	2.00	38.00		40.00						
	Scrubber		2.00		2.00						
	Industrial Total	6.50	451.00)	457.50						
	Grand Total										
		9.16	479.14	L	488.30						
	(A+B+C)	0.10			400.00						
	(A+B+C) Total water requirement f Quantity to be recycled: 3 Total fresh water requirer	or the project 26.00 KLD	ot: 488.30 K		400.00						
ii	Total water requirement for Quantity to be recycled: 3	or the project 26.00 KLD nent: 162.30	ot: 488.30 K		400.00						
iii	Total water requirement f Quantity to be recycled: 3 Total fresh water requirer Waste water generation (or the project 26.00 KLD nent: 162.30 KLD)	:t: 488.30 K) KLD	LD							
iii	Total water requirement f Quantity to be recycled: 3 Total fresh water requirer	or the project 26.00 KLD nent: 162.30 KLD)	ot: 488.30 K	LD	Total after		Remark	(S			
ii	Total water requirement f Quantity to be recycled: 3 Total fresh water requirer Waste water generation (or the project 26.00 KLD nent: 162.30 KLD)	et: 488.30 Kl KLD Proposed (Additiona	LD	Total after Expansion		Remark	(S			
<u>ii</u>	Total water requirement for Quantity to be recycled: 3 Total fresh water requirer Waste water generation (Category	or the project 26.00 KLD nent: 162.30 KLD) Existing KLD	et: 488.30 K KLD Proposed (Additiona KLD	LD	Total after Expansion KLD			(S			
ii	Total water requirement f Quantity to be recycled: 3 Total fresh water requirer Waste water generation (Category	or the project 26.00 KLD nent: 162.30 KLD)	et: 488.30 Kl KLD Proposed (Additiona	LD	Total after Expansion		Remark	KS.			
ii	Total water requirement f Quantity to be recycled: 3 Total fresh water requirer Waste water generation (Category Domestic Industrial	or the project 26.00 KLD nent: 162.30 KLD) Existing KLD 0.90	Proposed (Additiona KLD 6.95	LD	Total after Expansion KLD 7.85			KS.			
ii	Total water requirement f Quantity to be recycled: 3 Total fresh water requirer Waste water generation (Category Domestic Industrial Process	or the project 26.00 KLD nent: 162.30 KLD) Existing KLD 0.90	Proposed (Additional KLD 6.95	LD	Total after Expansion KLD 7.85			(S			
ii	Total water requirement for Quantity to be recycled: 3 Total fresh water requirer Waste water generation (Category Domestic Industrial Process Washing	er the project 26.00 KLD nent: 162.30 KLD) Existing KLD 0.90 0.32 1.18	Proposed (Additional KLD 6.95 329.00 5.00	LD	Total after Expansion KLD 7.85 329.32 6.18		 	(S			
ii	Total water requirement for Quantity to be recycled: 3 Total fresh water requirer Waste water generation (Category Domestic Industrial Process Washing Boiler	er the project 26.00 KLD nent: 162.30 KLD) Existing KLD 0.90 0.32 1.18 0.065	Proposed (Additiona KLD 6.95 329.00 5.00 6.00	LD	Total after Expansion KLD 7.85		 	KS .			
ii	Total water requirement for Quantity to be recycled: 3 Total fresh water requirer Waste water generation (Category Domestic Industrial Process Washing Boiler Chilling Plant	Existing KLD 0.90 0.32 1.18 0.065 -	Proposed (Additiona KLD 6.95 329.00 5.00 6.00 -	LD :	Total after Expansion KLD 7.85 329.32 6.18 6.065		 	(S			
ii	Total water requirement f Quantity to be recycled: 3 Total fresh water requirer Waste water generation (Category Domestic Industrial Process Washing Boiler Chilling Plant DM Plant	Existing KLD 0.90 0.32 1.18 0.065 - 0.20	Proposed (Additiona KLD 6.95 329.00 5.00 6.00 - 6.00	LD :	Total after Expansion KLD 7.85 329.32 6.18 6.065 - 6.20		 	(S			
ii	Total water requirement f Quantity to be recycled: 3 Total fresh water requirer Waste water generation (Category Domestic Industrial Process Washing Boiler Chilling Plant DM Plant Cooling Tower	Existing KLD 0.90 0.32 1.18 0.065 -	Proposed (Additiona KLD 6.95 329.00 5.00 6.00 - 6.00 1.90	LD :	Total after Expansion KLD 7.85 329.32 6.18 6.065 - 6.20 1.95		 	(S			
iii	Total water requirement f Quantity to be recycled: 3 Total fresh water requirer Waste water generation (Category Domestic Industrial Process Washing Boiler Chilling Plant DM Plant	Existing KLD 0.90 0.32 1.18 0.065 - 0.20 0.05	Proposed (Additiona KLD 6.95 329.00 5.00 6.00 - 6.00	LD :	Total after Expansion KLD 7.85 329.32 6.18 6.065 - 6.20	2.00	 	S			

	Proposed: In-house ETP MEE Capacity					
V	iviode of Disp	osal & Final meeting point				
	Domestic:	Into Septic Tank / Soak Pit system.				
	Industrial:	After expansion, Industrial wastewater generated from manufacturing process and other ancillary operation shall be segregated in two different streams like low COD and high COD stream. Low COD stream of effluent will be treated into ETP having primary, secondary & tertiary treatment and then sent to RO plant from where RO permeate water will be again reused in process and RO rejected water will be sent to MEE. High COD stream of effluent, after pH adjustment sent to stripper followed by MEE from where water will be concentrated to recover mixed solvent, salt and condensed water will be reused for washing, scrubber, chilling plant & process.				
vi	In case of Common facility (CF) like CETP, Common Spray dryer, Common MEE, CHWIF etc. Name of Common facility					
	Not Applicable					
	Membership of	of Common facility (CF)				
	(For waste wa	ater treatment)				
	Not Applicable	e				
vii	Simplified wa	tter balance diagram with reuse / recycle of waste water				

	S r. n o	Source of emission With Capacity	Stack Height (meter)	Type of Fuel	Quantity of Fuel MT/Day	Type of emissions i.e. Air Pollutants	Air Pollution Control Measures (APCM)				
	E	kisting	-	-		1	-				
	1	Boiler (Capacity: 1 TPH)	18.0 m	Natura Gas	100 m3/day	- PM	Adequate stack height provided				
	2	D. G Set – 01 No. (Stand By) (Capacity: 200 KVA)	6.00 m	HSD	55 Lit/hr	SO2 NOx	Adequate stack height provided				
	Pi	oposed	_								
	3	Boiler (Capacity: 5 TPH)	18.0 m	Natura Gas	2000 m3/day	PM	Adequate stack height will be provided				
	4	D. G Set – 01 No. (Stand By) (Capacity: 500 KVA)	8.00 m	HSD	135 Lit/hr	SO2 NOx	Adequate stack height will be provided				
ii		gas i.e. Type of pollu	tant gases	(SO2, F	ICI, NH3, CI2	, NOx etc.)	•				
	Existing	& Proposed									
	Sr.	Specific Source of emission (Name of the Prod & Process)	Тур	e of ssion	Stack/Vent Height (meter)	Air Pollution Measures (APCM)					
	Existing										
	 D										
	Proposed										
	1. 2.	Process Vent – 1 Process Vent – 2	HC HB		10.0 m 10.0 m	Two atoms					
	3.	Process Vent – 3	SO		10.0 m	Two stage Alkali Scru					
	4.	Process Vent – 4	Br2		10.0 m	Alkali oci	IDDCI				
	5.	Process Vent – 5	NH		10.0 m	Acid Scrub	ober				
	6.	Process Vent – 6		ogen	10.0 m	-					
iii	Fugitive emission details with its mitigation measures. Sources of fugitive emissions will be from raw material storage area, handling of chemicals,										
	To mini while lice Transport minimu	cturing process and fromize fugitive emission puid material will be chortation of raw material manual material handling	, powder r arged thro ls & produ ndling will	naterial vough pipe cts will be be carrie	vill be allowed line. e carried out	d in a vessel to by trolley with	in premises and				
F		ous waste the Hazardous and Ot	ther Waste	es (Mana	gement and ⁻	Transboundar	y Movement) Rules				

i	•	T	0	0.1	10 ""			B.A
	Sr n	Type/Nam e of Hazardous	Specific Source of generation	Categor y and Schedul	Quantity (MT/Ann			Management of HW
	О.	o. waste (Name of e as per the Activity, HW Product etc) Rules.	Existing	Propose d	Total			
		ETP Sludge	Effluent Treatment Plant	35.3 (Sch. I)	12.0 MT/yea r	298.00 MT/year	310.00 MT/yea r	Collection, Storage, Transportation & Disposal at TSDF site for landfilling
		Used Oil	D. G Set	5.1 (Sch. I)	0.050 MT/yea r	0.125 MT/year	0.175 MT/yea r	Collection, Storage, Transportation & Disposal by Selling to registered Re- Refiners.
		Empty barrels / containers / liners contami- nated with hazardous chemicals /wastes	Raw material & Finished product packing material	33.1 (Sch. I)	0.50 MT/yea r	8.50 MT/year	9.00 MT/yea r	Collection, Storage, Transportation and Disposal by selling to registered re- cyclers approved by GPCB / CPCB OR Collection, Storage, Decontamination and reuse within premises /sell to local scrap vendor.
		Process Waste / Residue	Process (so many products)	28.1 (Sch. I)		2100.00 MT/year	2100.00 MT/yea r	Collection, Storage, Transportation and Disposal for incineration.
		Sludge from Scrubber (Inorganic Salt)	Scrubber	35.1 (Sch. I)		9.50 MT/year	9.50 MT/yea r	Collection, Storage, Transportation & Disposal at TSDF site for landfilling.
		Spent Catalyst	Process (so many products)	28.2 (Sch. I)		300.00 MT/year	300.00 MT/yea r	Collection, Storage, Transportation and Disposal at TSDF site for secured landfill OR Collection, Storage, Transportation

	_		T	1		ı	T		П
								and Sell to Registered Recyclers.	
		MEE Salt	MEE	35.3 (Sch. I)	5.10 MT/yea r	2154.90 MT/year	2160.00 MT/yea r	Collection, Storage, Transportation & Disposal by sending to TSDF site.	
		Distillation Residues	Process (so many products)	20.3 (Sch. I)	3.00 MT/yea r	3000.00 MT/year	3003.00 MT/yea r	Collection, Storage, Transportation and Disposal for co- processing/incine ration	
		Spent Carbon	Process (Product No. 5,18,35,57, 60,62,63,64	28.3 (Sch. I)		540.00 MT/year	540.00 MT/yea r	Collection, Storage, Transportation and Disposal for co-processing	
		Salt (Sodium Chloride) (85-90%)	Process (Product No. 2,4,6,7,14,1 5, 35,46,51,61	28.1 (Sch. I)		19800.0 0 MT/year	19800.0 0 MT/yea r	Collection, Storage, Transportation and Disposal at TSDF site –for secured landfill OR Sell to Registered Recycler	
		Aluminium Chloride (30-40%)	Process (Product No. 6,14,32,46)	28.4 (Sch. I)		40200.0 0 MT/year	40200.0 0 MT/yea r	Maximum quantity (10800 MTA) will be reused in process within premises and balance quantity (29400 MTA) will be disposed by selling to Authorized end user as per Haz. Waste Rule-9 and after getting prior permission from GPCB.	
		Sodium	Process	28.4		33300.0	33300.0	Maximum	

, , , ,	I A	(D	(0 ! "	1				
	Acetate (10-15%)	(Product No. 6,14,32,46)	(Sch. I)		0 MT/year	0 MT/yea r	quantity (4500 MTA) will be reused in process within premises and balance quantity (28800 MTA) will be disposed by selling to Authorized end user as per Haz. Waste Rule-9 and after getting prior permission from GPCB.	
	Manganes e Dioxide (75-80%)	Process (Product No. 6)	28.4 (Sch. I)		2280.00 MT/year	2280.00 MT/yea r	Collection, Storage, Transportation & Disposal by selling to Authorized end user as per Haz. Waste Rule-9 and after getting prior permission from GPCB.	
	Sodium Bromide (30-35%)	Process (Product No. 8,35,40)	28.4 (Sch. I)		16380.0 0 MT/year	16380.0 0 MT/yea r	Collection, Storage, Transportation & Disposal by selling to Authorized end user as per Haz. Waste Rule-9 and after getting prior permission from GPCB.	
	Spent Sulphuric Acid (60%)	Process (Product No. 8,9,45,47)	B 15 (Sch. II)		32040.0 0 MT/year	32040.0 0 MT/yea r	Maximum quantity (9900 MTA) will be reused in process and ETP within premises and balance quantity (22140 MTA) will be disposed by selling to Authorized end user as per Haz. Waste Rule-9 and after getting prior permission from GPCB.	
	Ammoniu	Process	28.4		1320.00	1320.00	Maximum	Ш

m Chloride		(Sch. I)		MT/year	MT/yea	quantity (1200
(40-45%)	No. 38)				r	MTA) will be reused in process within premises
						and balance quantity (120
						MTA) will be
						disposed by selling to
						Authorized end user as per Haz.
						Waste Rule-9 and
						after getting prior permission from
						GPCB.
						Collection, storage,
	Process			30000 0	39900.0	recovered through in-house
				0	0 MT/Yea	distillationORsent
Contoni	stripper	(30111.1)		MT/Year	r	for distillation job worker to
						authorized recycler
	m Chloride (40-45%) Spent Solvent	(40-45%) No. 38) Process (so many products) &	(40-45%) No. 38) Process Spent (so many products) & (Sch. I)	Spent (so many products) & (Sch. I)	Spent Process (so many products) & Sch. I) 39900.0 O MT/Year	Spent Process (so many products) & (Sch. I) 39900.0 0 0 0 0 0 0 0 0 0

ii		ership details of TSDF, C W management)	HWIF etc.	Unit has by M/s. E		rship of TSDF site operated		
				Unit has also got membership of M/s. SEPPL, Bhachau.				
iii		s of Non-Hazardous waste al (MSW and others)	e & its					
	Sr. No.	Type of Waste	Source of Generation	n	Category of Waste	Disposal		
	1.	Domestic Waste (Food waste, Plastic, Paper etc.)	Employees in the pren		MSW	Collected in separate bin and disposed to bin of GIDC.		
	2.	2. (Glass wool [Insulating Material, Scrap]) Steam Vesse		e & ISW		Sell to local scrap vendor		
	3.	Industrial Waste (Wooden pellets)	From Raw & Product area		ISW	Sell to local scrap vender		
G	Solver	nt management, VOC emi	issions etc.					
i	Types	of solvents, Details of So	Ivent recove	ry, % reco	very. reuse	of recovered Solvents		
	In house solvent recovery plant will be instal process and waste residue will be sent for co					vent will be again reused in		
ii	VOC e	mission sources and its r	nitigation me	easures				
		generation will be from st			w materials.			
	VOC a	nalysers will be provided	to detect an	detect any solvent leakages during storage and handling.				

During the meeting dated 07/01/2019, technical presentation made during the meeting by project proponent. During the meeting, the project was appraised based on the information furnished in the EIA Report, various issues raised during the public hearing and details presented during the meeting.

The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period March 2017 to May 2017. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx, NH3, VOC, HCI, CO at eight locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using AERMOD view model. The resultant concentrations are within the NAAQS. The modelling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS). Analysis of ground water samples shows that TDS is higher than the desirable limit but within the permissible limit specified by IS:10500. Hardness is higher than the desirable limit but at one location higher than the permissible limit. Chloride is marginally higher than the desirable limit at one location.

Analysis of surface water samples shows that Turbidity and TDS in canal water is higher than the desirable limit but within the permissible limit specified by IS:10500. Total coliform is higher than the permissible limit at all locations.

Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan has been covered in the RA report.

Committee deliberated on waste water management, APCM, Spent acid & HW management, spent solvent management, Baseline study, CER, EMP, safety aspects etc.

While discussing regarding R & D products, PP informed that they will manufacture 1 MT/Month of R & D products instead of 10 MT/Month.

After deliberation, it was unanimously decided to consider the project for further consideration only after

satisfactory submission of the following:

Methods for segregation of waste water streams based on characteristics at source and its sound management. Treatability of the proposed waste water management scheme.

Keeping in view direction under section 18 (1) (b) of the Water (Prevention and Control of Pollution) act, 1974 issued by CPCB regarding compliance of CETP.

Technical justification for proposal SSE – Single Stage Evaporator instead of MEE – Multi Effect Evaporator.

Complete details of spent solvent management as per the ToR no. 42

Project specific safety details as per ToR no. 53

PP has submitted reply for the above additional details sought vide letter on 29/01/2019.

The project was considered in SEAC meeting dated 06/02/2019.

PP has submitted their reply as below:

PP submitted that after expansion, Industrial wastewater generated from manufacturing process and other ancillary operation shall be segregated in two different streams like low COD and high COD stream for which we will provide two separate collection tank for the same. Wastewater generated from utility having low COD and wastewater generated from manufacturing process having low COD will be sent to in-house ETP. Low COD stream of effluent will be treated into ETP having primary, secondary & tertiary treatment and then sent to RO plant from where RO permeate water will be again reused in process and RO rejected water will be sent to MEE. Wastewater generated from manufacturing process having high COD will be sent for pH adjustment. After pH adjustment it will be sent to stripper followed by MEE from where water will be concentrated to recover mixed solvent, salt and condensed water will be reused for washing, scrubber, chilling plant & process (non-reaction part).

This condition is not applicable to unit. PP submitted that at present unit is ZLD. And also after expansion, unit has proposed to install MEE to achieve ZLD.

PP submitted that at present we have installed double stage evaporator to achieve ZLD. In past, due to oversight we have mentioned it as single stage. For expansion of project unit has proposed Multi Effect Evaporator (MEE). Technical specification of MEE is mentioned in EIA report (in chapter-2 of EIA). After expansion, double stage evaporator will be kept as stand-by.

PP has addressed spent solvent management along with generated quantity, distillation residue, loss and recovery efficiency. PP has addressed project specific safety details.

Compliance of the ToR was found satisfactory.

After detail deliberation the committee unanimously decided to recommend the proposal for grant of EC to SEIAA.

2	SIA/GJ/IND2/21133/2017	M/s. Dharti Enterprise	EC – Reconsideration
		Plot No. D-2/CH-326, GIDC Dahej – II,	
		Village – Jolva, Ta. – Vagra, Dist	
		Bharuch, Gujarat.	

Category of the unit : 5(f) Project status: Expansion

Project proponent (PP) submitted online application vide no. SIA/GJ/IND2/21133/2017 dated 20/10/2018 for obtaining Environmental Clearance.

SEIAA issued TOR to PP vide letter SEIAA/GUJ/TOR/5(f)/535/2018 dated 31/5/2018.

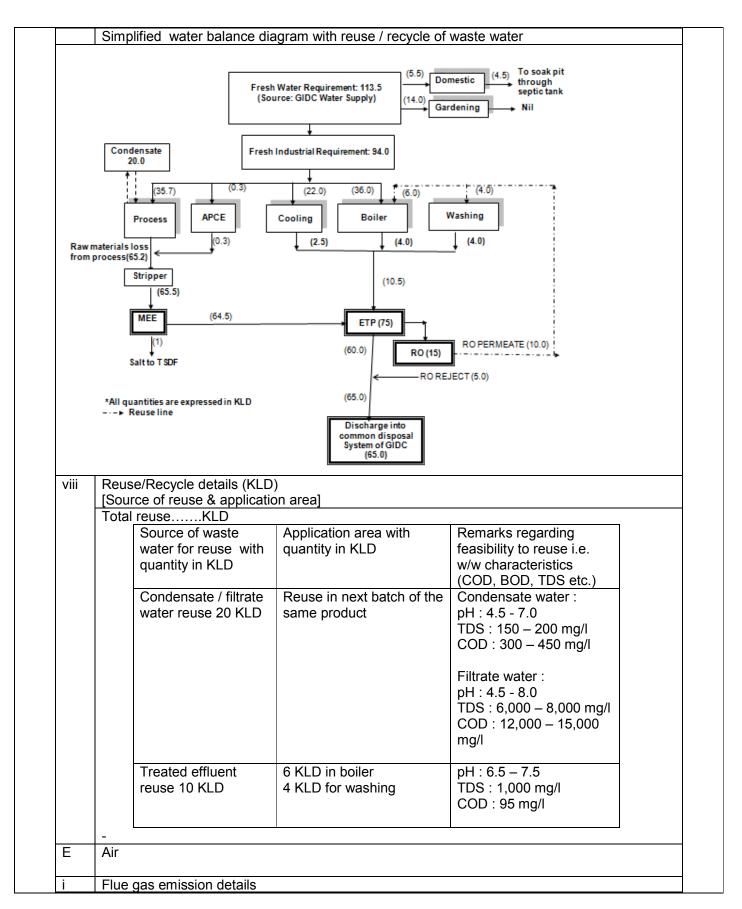
Project proponent has submitted EIA Report prepared by Envisafe Environment Consultants based on the TOR issued by SEIAA.

This is an existing unit engaged in Synthetic organic chemicals and now proposes for expansion as tabulated below:

		. Name of Products	CAS No.	Production Capacity, MT/Month			
S	Sr. No.			Existing	Propose d	Total after proposed Expansion	End Use of Product
		Mono Ammonium Phosphate	7722-76-1	1500.00	Nil	1500.00	Fertilizer
		Di Ammonium Phosphate	7783-28-0				Fertilizer

		<u> </u>				1
	Tri Sodium Phosphate	7601-54-9				Fertilizer
	Sodium Nitrate	7631-99-4				Dyestuff
	Potassium Sulphate	7778-80-5				Fertilizer
	Copper Sulphate	7758-99-8				Fertilizer
	Nickel Sulphate	7786-81-4				Fertilizer
	Zinc Sulphate	7733-02-0				Fertilizer
	Manganese Sulphate	7785-87-7				Fertilizer
	Ammonium Sulphate	7783-20-2				Fertilizer
	Magnesium Sulphate	7487-88-9				Fertilizer
	Potassium Nitrate	7757-79-1				Fertilizer
	Potassium Chloride	7447-40-7				Fertilizer
	Soil Conditioner Granule/Powder (Ca: MgO: S different types of grade)		3000.00		3000.00	Fertilizer
	NPK Granulation	66455-26-3	2000.00		2000.00	Fertilizer
	Sodium Chloride	7647-14-5	800.00		800.00	Dyestuff
A-1	N,N-Di-[2-Hydroxyethyl]-m- Chloroaniline	92-00-2				
A-2	N,N-Di-[2-Hydroxyethyl]-m- Toluidine	91-99-6				
A-3	N,N-Di-[2-Acetoxyethyl]-m- Toluidine	91-99-6	Nil			
A-4	N,N-Dihydroxyethyl Meta Amino Acetanilide	90-02-4]			Mfg of Disperse Dyes
A-5	N,N-DiAcetoxyethyl Meta Amino Acetanilide	99-57-0				
A-6	N,N-Dihydroxyethyl Aniline	120-07-0				
A-7	3,N,N-Dihydroxyethyl 4-Methoxy Acetanilide	24530-67-4				
A-8	3,N,N-Diacetroxyethyl 4- Methoxy Acetanilide (M5)	24530-67-4				
A-9	3,N[2-Cyanoethyl]-N-[2- Acetoxyethyl]-Amino-4-Methoxy Acetanilide - M 6	22588-78-9				
A-10	N-Cyanoethyl Aniline9NCEA)]			
A-11	N-Cyano -Hydroxy ethyl Aniline (M-7A)	92-64-8	Nil	500	500	Mfg of Disperse Dyes
A-12	N-Cyanoethyl N-Acetoxyethyl Aniline (M-7)	22031-33-0	-			Dyes
A-13	N-Ethyl N-CyanoEthylAiline(m-8)	148-87-8				

T	3,N,N-Diethyl Amino 4-Methnoxy					
A-14	Acetamilide	19433-93-3				
A-15	N-Cyanoethyl Meta Amino Acetanilide					
A-16	N-Cyanoethyl N-Acetocxy Ethyl Meta Amino Acetanilide	28505-89-7				
A-17	N-Ethyl,N-[2- Hydroxyethyl]Aniline - M15	92-50-2				
A-18	N-[2-Cyanoethyl]-N-Ethyl-m- Toluidine - M17	148-69-6				
A-19	N-Ethyl,N-2-Hydroxyethyl -m- Toluidine - M21	91-88-3				
A-20	N,N - Biscyano ethyl Aniline (M-22)	1555-66-4				
A-21	N,N - Discyano ethyl Meta toluidine (M-23)					
A-22	3 N,N - Diallyl Amino -4-Methoxy -Acetanilide (M 24)	51868-45-2				
A-23	N-Cyano Ethyl m-Toluidine-M 38	27618-25-3				
A-24	N -Cyano Ethyl N-Benzyl Aniline (M-38)	26322-20-3				
A-25	N-Cyano Ethyl N-Hydroxy Meta Toluidine	119-95-9				
A-26	N-Cyano Ethyl N-Acetoxy Ethyl Meta Toluidine					
B-1	Ethyl Pyridone	28141-13-1				
B-2	Methyl Pyridone					
B-3	Butyl Pyridone	39108-47-9	Nil	50	50	Mfg of Disperse
B-4	Propoxy Ethyl Pyridone					Dyes
B-5	3 Methoxy Propyl Pyridone					
C-1	Disperse Orange SGS			10	10	
C-2	Disperse Red 6B		Nil	10	10	Textile and
C-3	Disperse Scarlet R		INII	15	15	Printing Ind.
C-4	Disperse Blue DBR			10	10	
D-1	2:6 DBPNA (2:6 Di Bromo 4- Nitro Aniline)	827-94-1		15	15	
D-2	2:6 DCPNA (2:6 Di Chloro 4- Nitro Aniline)	99-30-9		10	10	Mfg of Disperse
D-3	DEMT (Di Ethyl Meta Toluidine)	91-67-8	Nil	25	25	Dyes
D-4	NNDEMAA (N,N,Di Ethyl Meta Amino Acetanilide)	6375-46-8	INII	245	245	
D-5	2-Carbonyl Pyridone	29047-12-9]	24	24	Desether D
D-6	Sulfomethyl Pyridone	40306-70-5	1	13	13	Reactive Dyes


D-7	Sulphanilic Acid	121-57-3		552	552	Acid & Direct Dyes		
D-8	2:6 DBPT (2:6 Di Bromo Para Toluidine)	6968-24-7		45	45	Mfg of Disperse		
D-9	4-CAP (4 Chloro 2 Amino Phenol)	95-85-2		40	40	Dyes		
D-10	6-Bromo 2:4 Dinitro Aniline	1817-73-8		30	30			
D-11	2:4 Dinitro Aniline	97-02-9		20	20	Reactive Dyes		
D-12	3-Amino Crotanonitrile	1118-61-2		30	30			
D-13	Dispersing Agent Nks	9084-06-4		400	400	Mfg of Disperse		
D-14	Dispersing Agent 045	9003-35-4		50	50	Dyes		
D-15	Castor Oil Ethoxylates	61791-12-6		150	150			
D-16	Nonyl Phenol Ethoxylates	9016-45-9		150	150	Textile Auxiliary		
D-17	Lauryl Alcohol Ethoxylates			150	150			
TOTAL			7300	2544	9844			

The project falls underCategory B of project activity 5(f) asper the schedule of EIA Notification 2006. PP was called for presentation in the SEAC meeting dated 26/12/2018.

Salient features of the project are as under:

Sr.	Particulars		Details						
no.	Total cost of Proposed (Rs. in Crores):	Project	Existing (for inorganic products) : 1.97 Proposed (for Synthetic organic chemicals) : 4.27 Total: 6.24						
В	Total Plot area (sq. meter)				s): 13,562.85 c chemicals): Nil				
	Green belt area (sq. meter)		Existing(for inorganic products): 2,200 Proposed(for Synthetic organic chemicals): 2,286 Total: 4,486						
С	Employment generation	Existing: 17 Proposed: 44 Total:61							
D	Water								
İ	Source of Water Supply (GIDC Bore well, Surfact Tanker supply etc)		GIDC						
	Status of permission fro concern authority.	m the	Permission obtained from GIDC						
ii	Water consumption (KL	.D)							
	Category	Existing KL/day	Proposed (Additional) KL/day	Total after Expansion KL/day	Remarks				
	Domestic	4.0	1.5	5.5	Fresh				
	Gardening 1.0		14.0	14.0	Earlier 1.0 KLD water was reused				

					which will be replaced with fresh
					water during
	Industrial				expansion
	Process	Nil	56.0	56.0	Fresh: 36 Condensate reuse: 20
	Boiler	3.0	39.0	42.0	Fresh: 36 Reuse: 3
	Cooling	2.0	20.0	22.0	Fresh
	Washing	Nil	4.0	4.0	Reuse: 4
	Total (A+B+C)	10.0 (Fresh: 9.0 + Reuse: 1.0)	134.5 (Fresh: 104.5+ Reuse: 30.0)	143.5 (Fresh :113. + Reuse : 30.0)	5
iii	boiler and washing) Total fresh water require Waste water generation		Proposed	Total after	
	Cotogony	LAISHING	/	C	D
	Category	KL/Day	(Additional) KL/day	Expansion KL/day	Remarks
	Domestic	KL/Day 1.5			Remarks
	Domestic Industrial	1.5	KL/day 3.0	KL/day 4.5	Remarks
	Domestic Industrial Process	1.5 Nil	KL/day 3.0 65.5	KL/day 4.5 65.5	Remarks
	Domestic Industrial Process Boiler	1.5 Nil 0.5	3.0 65.5 3.5	KL/day 4.5 65.5 4.0	Remarks
	Domestic Industrial Process Boiler Cooling	1.5 Nil 0.5 0.5	KL/day 3.0 65.5 3.5 2.0	KL/day 4.5 65.5 4.0 2.5	Remarks
	Domestic Industrial Process Boiler Cooling Washing Total Industrial waste water	1.5 Nil 0.5 0.5 Nil	65.5 3.5 2.0 4.0	KL/day 4.5 65.5 4.0 2.5 4.0 76.0	Generation: 76.0 Reuse: 10.0 Discharge: 65.0 MEE salt: 1.0
iv	Domestic Industrial Process Boiler Cooling Washing Total Industrial waste water Treatment facility within [In-house ETP (Primary	1.5 Nil 0.5 0.5 Nil 1.0 premises v, Secondar	KL/day 3.0 65.5 3.5 2.0 4.0 75.0	KL/day 4.5 65.5 4.0 2.5 4.0 76.0	Generation: 76.0 Reuse: 10.0 Discharge: 65.0 MEE salt: 1.0 d Proposed]
	Domestic Industrial Process Boiler Cooling Washing Total Industrial waste water Treatment facility within [In-house ETP (Primary MEE Capacity – 75 KLI ETP hydraulic capacity	1.5 Nil 0.5 0.5 Nil 1.0 premises v , Secondar 0 - 90 KLD (KL/day 3.0 65.5 3.5 2.0 4.0 75.0 with capacity [y, Tertiary), ME	KL/day 4.5 65.5 4.0 2.5 4.0 76.0 For existing and EE, Stripper, Sp	Generation: 76.0 Reuse: 10.0 Discharge: 65.0 MEE salt: 1.0 d Proposed] bray Dryer, STP etc
iv	Domestic Industrial Process Boiler Cooling Washing Total Industrial waste water Treatment facility within [In-house ETP (Primary MEE Capacity – 75 KLE	1.5 Nil 0.5 0.5 Nil 1.0 premises v , Secondar 0 - 90 KLD (KL/day 3.0 65.5 3.5 2.0 4.0 75.0 with capacity [y, Tertiary), ME	KL/day 4.5 65.5 4.0 2.5 4.0 76.0 For existing and EE, Stripper, Sp	Generation: 76.0 Reuse: 10.0 Discharge: 65.0 MEE salt: 1.0 d Proposed] bray Dryer, STP etc
	Domestic Industrial Process Boiler Cooling Washing Total Industrial waste water Treatment facility within [In-house ETP (Primary MEE Capacity – 75 KLE ETP hydraulic capacity Mode of Disposal & Fin- Domestic: 4.5 K	1.5 Nil 0.5 0.5 Nil 1.0 premises v , Secondar) - 90 KLD (al meeting	KL/day 3.0 65.5 3.5 2.0 4.0 75.0 with capacity [y, Tertiary), ME Primary, Second point k pit through second point	KL/day 4.5 65.5 4.0 2.5 4.0 76.0 For existing and EE, Stripper, Spandary and Tertial	Generation: 76.0 Reuse: 10.0 Discharge: 65.0 MEE salt: 1.0 d Proposed] bray Dryer, STP etc ary treatment units)
	Domestic Industrial Process Boiler Cooling Washing Total Industrial waste water Treatment facility within [In-house ETP (Primary MEE Capacity – 75 KLD ETP hydraulic capacity Mode of Disposal & Findustrial: Domestic: 4.5 K Industrial: To connece	1.5 Nil 0.5 0.5 Nil 1.0 premises v , Secondar) - 90 KLD (al meeting (LD To soa ommon dis	KL/day 3.0 65.5 3.5 2.0 4.0 75.0 with capacity [y, Tertiary), Mi Primary, Secondary point k pit through secondary posal system of ment	KL/day 4.5 65.5 4.0 2.5 4.0 76.0 For existing and EE, Stripper, Spandary and Tertial eptic tank of GIDC for final	Generation: 76.0 Reuse: 10.0 Discharge: 65.0 MEE salt: 1.0 d Proposed] bray Dryer, STP etc ary treatment units)
	Domestic Industrial Process Boiler Cooling Washing Total Industrial waste water Treatment facility within [In-house ETP (Primary MEE Capacity – 75 KLE ETP hydraulic capacity Mode of Disposal & Fin Domestic: 4.5 K Industrial: To connece In case of Common facil Name of Common facil	1.5 Nil 0.5 0.5 Nil 1.0 premises v , Secondar) - 90 KLD (al meeting (LD To soa ommon dis ssary treati	KL/day 3.0 65.5 3.5 2.0 4.0 75.0 with capacity [y, Tertiary), Mine Primary, Second point k pit through second posal system of ment e CETP, Comment	KL/day 4.5 65.5 4.0 2.5 4.0 76.0 For existing and EE, Stripper, Spandary and Tertional Eptic tank of GIDC for final End of GIDC for	Generation: 76.0 Reuse: 10.0 Discharge: 65.0 MEE salt: 1.0 d Proposed] oray Dryer, STP etc ary treatment units) I disposal into deep sea after, Common MEE, CHWIF 6
v	Domestic Industrial Process Boiler Cooling Washing Total Industrial waste water Treatment facility within [In-house ETP (Primary MEE Capacity – 75 KLE ETP hydraulic capacity Mode of Disposal & Fin Domestic: 4.5 K Industrial: To connece In case of Common facility.	1.5 Nil 0.5 0.5 Nil 1.0 premises v , Secondar) - 90 KLD (al meeting (LD To soa ommon dis ssary treati	KL/day 3.0 65.5 3.5 2.0 4.0 75.0 With capacity [y, Tertiary), ME Primary, Seconomit k pit through seconomit k posal system of ment e CETP, Comr	KL/day 4.5 65.5 4.0 2.5 4.0 76.0 For existing and EE, Stripper, Spandary and Tertional Eptic tank of GIDC for final End of GIDC for	Generation: 76.0 Reuse: 10.0 Discharge: 65.0 MEE salt: 1.0 d Proposed] oray Dryer, STP etc ary treatment units) I disposal into deep sea after, Common MEE, CHWIF 6

- 							
SR no.	Source of emission With Capacity	Stack Height (meter)	Type of the fuel	Quantit of Fuel MT/hr& MT/Day	s i.e.	sion Air APCM	
Exis			_		,		
1	Steam boiler (1 TPH)*	11.0	Coal	0.6 TPI	D PM	Stack of adequate	
2	Hot Air Generator	11.0	Wood	0.4 TPI	SO2	height Stack of adequate height	
Prop	osed					· -	
3	Steam boiler (5 TPH)	20.0	Coal	Coal -2 TPD & / OR Biofuel	0.0	Multicyclone Separator followed by bag filter	
4	Thermic fluid heater (5.0 Lac Kcal/hour)	30.0	& / OR Biofuel (Agro waste)	(Agro waste) - 23.4 TPD		Cyclone separator	
5	Hot Air Generator (10.0 Lac Kcal/hour (for spray dryer))	11.0		AVG. 2 TPD	1.7	Multicyclone	
6	Hot Air Generator (2 x 1.0 Lac Kcal/hour)	11.0 (Commo n stack)	Biofuel (Agro waste)	1.0 TPI)	Cyclone Separaztor	
7	DG Set (250 KVA)	5	Diesel	55 Lit/h	r PM SO2 NOx	Adequate Stack Height as per CPCB guidelines	
						d after proposed expa	ansior
	ess gas i.e. Type of ng & Proposed	pollutant gas	ses (SO2,	HCI, NH	3, Cl2, NO	etc.)	
-	Sr. no. Source of e	mission	Type of emission	, ∣⊦	tack/Vent leight meter)	APCM	
	Existing			(1			1
	1 Drier		PM	1	1.0	Dust Collector	-
	Proposed			<u> </u>		l	1
			NH3, SC	12			1

3	Tray Dryer- 2 Nos. 400 Lit/500 Kg of product (Proposed)	PM	11.0	Dust Collector
4	Spin Flash Dryer 400 Lit/hr (Proposed)	PM	11.0	Dust Collector
5	Spray Dryer 1000 Lit/hr (Proposed)	РМ	15.0	Cyclone followed by Wet scrubber

iii Fugitive emission details with its mitigation measures.

There are chances of fugitive emission and odour nuisance during manufacturing process as well as due to storage & handling of raw materials and products in existing as well as expansion phase. The unit has taken following precaution for the control of fugitive emission and same will be adopted for the proposed expansion.

Probable Sources	Control Measures
Manufacturing activities during charging into reactors	Liquid raw materials are charged by pumping & closed loops. Dosing is done by metering system to avoid fugitive emissions. Dedicated measuring tanks are provided to each reactor. Usage of closed handling system for odorous chemicals /solvents as far as possible.
Solvent recovery during filling and withdrawal from tanks and vessels	Breather valves, PSVs, Rupture discs will be installed for process/storage tank vents. Vapor recovery systems shall be provided at required locations. Proper Control of the operating parameters, mainly temperature, vacuums, cooling media circulation, during plant operation and solvent recovery.
Chemical vapor from wet cake in filtration and drying area	Covered transfer systems will be adopted, workers shall be provided PPE. Fume extraction systems will be provided, wherever required
Emission from bulk storage tanks during storage, loading, unloading	Breather valves, PSVs, Rupture disc, Vapor recovery system are installed for process/storage tank vents. Unit adopts bulk handling of odorous chemicals and avoid usage of drums/carboys for such materials
Hazardous chemical storage area	Dedicated storage area is provided Adequate ventilation systems are provided All the containers are kept tightly closed Trolley/Forklift is used for transfer of drums and containers Transfers of odorous waste is preferably during day time. Transfers during odd hours is avoided.

	fillin tank	vent recovery During ag and withdrawal fro ks and vessels	Breather valves, PSVs, rupture discs are installed for process/storage tank vents. Vapor recovery systems are provided at required locations. Operating parameters are controlled properly, mainly temperature, vacuums, cooling media circulation, during plant operation.						
	Chemical vapor from wet cake in filtration and drying area			provide Fume e required	d with PPE xtraction sy d.	stems are	e adopted, v	vherever	
		np and compressor issions		Standby ensured Drip tra	y arrangem d.	ent for criti aced for e	d in pumps cal equipm ach pump t	ent and par	
	emi	ssure relief valve ssion from pipelines ves, Flanges, plugs a rument connections	and	Connect Welded Suitable Suitable Periodic	ted in case pipes are ue gasket mae glad packic inspection	of toxic gaused where aterials are ing is used and main	ever feasibl used.	e.	
		ease from sampling l zardous chemical sto a							d
F	(as pe	dous waste er the Hazardous and 2016. ng & Proposed	l Othe	r Wastes	(Managem	ent and Tr	ansbounda	ry Moveme	ent)
İ	Sr.	Type of waste	Sour	ce	0.1	Quantity	per Annum		
	No.				Categor y	Existing	Propose d	Total	
	1	ETP Sludge	ETP		Sch - 1	Nil	100 MT	100 MT	
	2	MEE Salt		-f	35.3	Nil	310 MT	310 MT	
	3	Inorganic Process waste	Mfg.o Prod C4		Sch-I 26.1	24.0 MT	61.0 MT	85.0 MT	
	4	Iron sludge	Mfg.d Prod		Sch - 1 26.1	Nil	960 MT	960 MT	
	5	Organic Process waste (Methanol + Water)	Mfg.o Prod B5	of .B1 to	Sch-I 26.1	Nil	184 MT	184 MT	

	6	Spe	nt solvent	ETP- Stripp	oer	Sch 26.4		Nil	100 KL	100 KL			
	7	Spent Sulfuric Mfg.of Pro.D5		Sch B-1		Nil	1,405 MT	1,405 MT					
	8		ed Liquor from ubbers	APC	PCM Sch-II B36			-	94 KL	94 KL			
	9		carded tainers/ Bags	Raw Mate Stora Hand	ge &	Sch 33.1		8.49 MT	31.51 MT	40 MT			
	10	Spe	nt oil	Plant Mach	and ineries	Sch 5.1	-I,	12 Lit	200 Lit	212 Lit			
ii	- Membership details of TSDF, CHWIF etc. (For HW management) Existing for inorganic products: TSDF - BEIL												
			organic chemicals) TSDF & CHWIF- BI to commencement)					cals) IF- BEIL (nent)	- BEIL (will be obtained prior				
iii			lon-Hazardous SW and others)		& its				,				
G			nagement, VO		sions et	Э.							
i	Types	of sc	olvents, Details	of Solv	ent reco	very,	% reco	overy. re	use of rec	overed Solve	overed Solvents		
	Produ	uct	Name of Solve	, nt	Solvent Requirement, TPM Solvent Requirem			Requiremen	t %				
	Code	;	INAILIE UI SUIVE		resh	Reco	vered	Total	Fresh	Recovered	Total		
	C-2		Dimethyl		1.00	15.0	0	16.00	6.25	93.75	100.0		
	C-4		Formamide	().70	14.3	0	15.00	4.67	95.33	100.0		
	C-4		Methanol	C).25	4.75		5.00 5.00 95.00		95.00	100.0		
	D-12		Toluene	().96	18.2	5	19.21 5.00	95.00	100.0			
	Total	/ Ave	erage	2.91	52.3	0	55.21	5.23	94.77	100.0 0			
	Total	/ /٦٧٥		-		02.0		00.21	0.20	J 7.77	(

During the meeting dated 26/12/2018, technical presentation made by the Project proponent.

During the meeting, the project was appraised based on the information furnished in the EIA Report and details presented during the meeting.

The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect for the study area of 10 km radial distance from project site for the period Dec'16 – Feb' 17. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NO2, NH3, HCl, Cl2 and Br2 at Nine locations, including the project site. Baseline concentration of PM2.5, SO2& NO2, in the ambient air were within the norms specified for NAAQs at all the monitoring locations. PM10 were recorded beyond the NAAQS at Suva Village and Jolva Village. NH3, HCl, Cl2 and Br2 were found below detectable limit at all locations. The incremental Ground Level Concentration (GLC) has been computed using AERMOD View

model. It is revealed that the parameters viz., SO2, NO2, NH3, HCl, Cl2 and Br2 are well within the NAAQS / GPCB norms after consideration of incremental concentration due to proposed expansion project. The resultant concentrations are within the NAAQS.

They have valid CC&A for existing unit. Copy of CC&A, its compliance report is submitted. PP ensured that there are no court cases pending and no public complaints against the project.

The proposal is for expansion. Unit has valid CC&A and compliance of CCA conditions were deliberated at length. After expansion, effluent from manufacturing process and APCM will be sent to stripper followed by MEE, MEE condensate will be sent to ETP for further treatment. Boiler blow down, cooling bleed off and effluent from washing will be sent to ETP along with MEE condensate. Hence, total wastewater will be treated in ETP and discharged into Common disposal system of GIDC, which will be finally disposed to deep sea, after confirming norms prescribed by GPCB. PP informed that condensate water/ filtrate generated from products will be recvoled in the next batch of the same products however characteristics of condensate w/w and its adequacy for reuse in next batch is not submitted. Committee asked PP to explore possibility of reuse of treated w/w within the premises in order to reduce fresh water consumption. Two stage alkali scrubber will be provided with reactor of proposed product. Coal and agro waste will be used in proposed project. Multicyclone followed by Bag filter will be provided as an APCM with proposed steam boiler whereas Cyclone separator will be provided as an APCM with proposed 2nos. Hot Air Generators of 1.0 Lac Kcal/hour as well as TFH of 5 Lac Kcal/hour. Multicyclone will be provide as an APCM with Hot Air Generator of 10.0 Lac Kcal/hour. Committee found that unit has not addressed details of management of hazardous wastes under the HWM.2016. Committee deliberated all the TOR in detail with details of baseline data, GLC of, PM2.5, SO2, NO2, NH3, HCl, Cl2 and Br2 impact on surface water and ground water quality and Noise, EMP, CER with details of budgetary provisions. Committee found that risk assessment for EO storage and chlorine with all safety measures in accordance to the PESO standards is not addressed.

After deliberation, PP was asked to submit following details and it was unanimously decided to consider the proposal in one of the upcoming SEAC meeting after submission of the said details.

Details of characteristics of condensate w/w and its adequacy for reuse in next batch.

Details of management of generated hazardous wastes under the HWM, 2016.

To explore possibility of reuse of treated w/w within the premises.

To address adequacy of proposed ETP for the proposed expansion of the project.

To address the risk assessment for EO storage and chlorine with all safety measures in accordance to the PESO standards.

PP has submitted reply for the above additional details sought vide letter on 30/01/2019.

The project was considered in SEAC meeting dated 06/02/2019.

PP has submitted their reply as below:

PP has submitted characteristic of condensate wastewater and its adequacy for reuse in next batch.

PP has submitted management of HW as per HWR – 2016.

PP has submitted the possible reuse of treated effluent for washing and boiler make up @ 10 KLD; the net quantity of disposal of treated effluent will be @ 65 KLD.

PP has submitted adequacy certificate of proposed ETP which is designed to handle 90 KLD against effluent generation of 75 KLD.

PP has submitted revised risk assessment report for EO storage in tank farm instead of cylinder and chlorine cylinder will be below the threshold limit of attracting PESO provision.

During the meeting Committee considered this proposal and reply submitted by PP found satisfactory. Compliance of the ToR was found satisfactory.

After detail deliberation the committee unanimously decided to recommend the proposal for grant of EC to SEIAA.

3	SIA/GJ/IND2/17574/2016	M/s. VINAYAK INDUSTRIES	EC - Reconsideration
		Survey/Block No.: 191, Village: Zekada,	
		Tal: Bavla, Dist: Ahmedabad State:	
		Gujarat.	

Category of the unit : 5(f)

Project status: New

Project proponent (PP) has submitted online application vide no. SIA/GJ/IND2/17574/2016 dated 18/10/2016 for obtaining Environmental Clearance.

The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide their letter

SEIAA/GUJ/TOR/5(f)/24/2017 vide dated 24/03/2017.

Project proponent has submitted EIA Report prepared by Green circle Inc. based on the TOR issued by SEIAA.

Public Hearing was conducted by Gujarat Pollution Control Board on 19/06/2018 at project site of M/s. VINAYAK INDUSTRIES at Survey/Block No.: 191, Village: Zekada, Tal: Bavla, Dist: Ahmedabad.

This is a new unit and now proposes for Synthetic Organic Chemicals as tabulated below:

Sr.	Name of the Products	CAS no. /CI no.	Quantity	End-use of products
No.			MT/Month	
1	Binders	8002-74-2	500	Washing and dying of fabrics and
2	Adhesives	78279-10-4	200	yarns, and finishing, printing and
3	Wetting agents	577-11-7	200	sizing of fabric
4	O.T. Paste	1314-13-2	100	

The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006.

PP was called for presentation in the SEAC meeting dated 18/12/2018.

Washing

Salient features of the project are as under:

	t features of the pro	ject are as under:				
Sr.	Particulars			Details		
no.						
Α	Total cost of Prop	osed Project		1.5 Crores		
	(Rs. in Crores):					
			nagement System):. 0.27			
	Recurring cost to	wards the environmenta	al protection measures:0.08	85 Crores per Annum.		
В	Total Plot area (6267 Sq. m.				
	Green belt area,/7	Γree Plantation area (s	sq. meter)	2100 Sq. m.		
С	Employment gene	eration				
	Direct			10		
	Indirect	-				
	Total		10			
D	Water					
i	Source of Water S		Tanker supply			
	(GIDC Bore well,					
		ion from the concern a	uthority.	Not applicable		
ii	Water consumption	on (KLD)				
		Category	Water Consumption	Remarks		
			KLD			
		Domestic	1.0			
		Gardening	2.0			
		Industrial	13.24			
		Process	9.24			
		Washing	-			
		Boiler	2.0			
		Cooling	1.0			
		Others	1.0			
		Industrial Total	13.24			
		Total (A + B + C)	16.24			
		ement for the project: 1	16.24 KLD			
	Quantity to be rec	cycle: 2.0 KLD				
	Total fresh water	requirement: 14.24 KLI	D			
iii	Waste water gene	eration (KLD)				
	_	. ,				
	_	Catagory	KLD	Remarks		
		Category Domestic	1.0	Remarks		
			I I	 		
		Industrial	2.0	 		
		Process	-			

			Boiler		0.5					
			Cooling		0.5					
			Others		1.0					
			Total waste	water	3.0					
			(A+B)							
	-	<u></u>	,		•			•		
iv	Treatm	ent facility witl	h capacity					ETP		
	(ETP, 0	CETP, MÉE, S	STP, Spray [Oryeretc).				Colle	ction Tank	d/ Neutralization
			-					Tank	- 2.00 m3	
								Filtra	tion Syste	m 2000 liters / day
								Holdi	ng Tank (I	For Reuse of
								Treat	ed Water)	2.00 m3
	Mada	of Dianagal 9 F	inal maatin	a noint				Dom	notio: Cool	v nit
V	iviode c	of Disposal & F	-mai meeim	g point					estic: Soal	used in plant
vi	In cocc	of Common f	acility (CE) I	iko CETD	Commo	n Cnr	ov dryor		pplicable	useu iii piarit
VI		on MEE etc.,			Commo	ii Spi	ay ui yei	, INOL a	ірріісаріе	
		ership of Comr						Note	pplicable	
vii		Recycle detai		CI)				2 KLI		
E	Air	recycle detail	is (NLD)					Z INLI	,	
 		as emission de	staile							
'		Boilers/TFH/F		eate atc v	with cana	citice	viz TDL	4 Kcal/hr	MT/hr K\	/A etc
	140. 011		umaccs/DO	SCIS CIC. V	with Capa	icitics	VIZ. 11 1	i, ixcai/iii,	IVI I/III, IX	VA CIG.
	_									
	Sr.				Stack				Type of	
	No.	Description	Fuel	Quantity		I.		APCM	emission	
	110.	Docomption	1 401	Quartity	Dia (m)	ŀ	Ht. (m)	/ ti O.v.	s i.e. Air	
									Pollutant	
									s	
	1.	Boiler –	Agro-	50	0.20	1	0	Cyclone		
		1TPH	Waste	Kg/Hour					rPM SO2,	
			Briquettes					'	NOx	
	2.	D.G.Set -	HSD	20 LPH	0.10	7	7.0	_		
		125 KVA								
ii	Proces	s gas i.e. Type	e of pollutan	t gases (S	O2, HCI,	NH3	Cl2, NC	Ox etc.) - F	PM SO2, N	Юx
			•					•		
	Sr.		Stack					Conce	ntration of	
	No.	Description	Dia (m)	Ht. (m)	APC	M	Polluta	nts	
	1	Process Ve	, ,	5	111/	Alka	i scrubb	er SO2		
iii	Fugitive	e emission det		mitigation	measure		1001000	0. 002		
""	l agitiv	o cirilodiori aci	iano with ito	magadon	measure	<i>,</i> 0.				
	As belo	ow:								
		lled emissions	and provisi	on of PPE	s for the	worke	ers.			
		r maintenance	•					event lea	kage.	
		orocess is cari								ire and
	temper						•		•	
		r periodic mor	nitoring of we	ork area to	check th	ne fug	itive emi	ission.		
		33.5 % of the t							elt.	
F		lous waste							,	
	(as per	the Hazardou	is and Other	· Wastes (I	Managen	nent a	and Tran	sboundar	y Moveme	ent) Rules 2016.
				`						
i	Sr.	Type of	Source of	Category	and	Qua	ntity	Disposa	al	

	no.	Hazardous waste	generation	Schedule as per HW Rules.	(MT/Annum) Method	
		ETP Sludge	ETP	35.3	0.10	Collection, Storage, Transportation& Disposal through co- processing /at TSDF site.	
		Used / Spent Oil	Process	5.1	0.050	Collection, Storage, Transportation & reused as self-lubricant or sold to registered re- refiners.	
		Discarded Bags / Containers / Barrels	Packing /raw materials	33.1	1.500	Collection, Storage, Transportation & reused or sold to registered recyclers.	
	Quan	itity of discarde	ed containers	must be in MT/An	num.		
lii	Mem	bership details	of TSDF, Cl	HWIF etc.		Not applicable	

ii	Membership details of TSDF, CHWIF etc.	Not applicable
ii	Details of Non-Hazardous waste & its disposal (MSW and others)	Not applicable
G	Solvent management& VOC emissions etc.	
İ	Details of Solvent recovery (As per respective ToR)	Not applicable
	Types of solvents, Details of Solvent recovery, % recovery.	
	reuse of recovered Solvents	
ii	VOC emission sources and its mitigation measures	Not applicable

During the meeting dated 07/01/2019, technical presentation made during the meeting by project proponent. During the meeting, the project was appraised based on the information furnished in the EIA Report, various issues raised during the public hearing and details presented during the meeting.

The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period March 2017 to May 2017. Ambient Air Quality monitoring was carried out for PM10, PM 2.5, SO2, NOx, CO, VOCs, Ozone, ammonia, Benzene, Lead, Arsenic, Nickel, Benzopyrene at eight locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using ISCST3 model. The resultant concentrations are within the NAAQS. The modelling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).

Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan has been covered in the RA report.

Committee deliberated on waste water management, APCM, HW management, Baseline study, CER, EMP, safety aspects etc.

Committee asked PP for clarification regarding compliance of small units as defined in the amendment to EIA Notification, 2006 vide SO 1599 (E) dated 25/06/2014.

Upon asking about the clarification of wrong values of TDS in EIA report, PP could not reply satisfactorily. After deliberation, it was unanimously decided to consider the project for further consideration only after satisfactory submission of the following:

Compliance of all three conditions of small units as defined in the amendment to EIA Notification, 2006 vide SO 1599 (E) dated 25/06/2014. i.e. (i) Water consumption less than 25 M3/day; (ii) Fuel consumption less than 25 TPD; and (iii) not covered in the category of MAH units as per the Management, Storage, Import of Hazardous Chemical Rules (MSIHC Rules), 1989 as per the legal undertaking submitted with EIA report.

Clarification regarding wrong values of TDS analysis report as well as any other wrong values in EIA report with technical justification.

Project proponent submitted reply vide their letter dated 18/01/2019. PP has submitted as below:

PP has submitted Compliance of all three conditions of small units as defined in the amendment to EIA Notification, 2006 vide SO 1599 (E) dated 25/06/2014. (1) Fresh Water Consumption: 16.240 m3/day (Less than 25 m3/day), (2) Fuel Consumption – 1.2 TPD (Less than 25 TPD), (3) No any raw material covered under MSIHC Rules as per legal undertaking submitted by the unit.

PP submitted that error in multiplication factor was caused due to which abnormal reporting occurred, strict disciplinary action was taken against the concerned chemist.

During the SEAC meeting dated 06/02/2019, the said reply was considered by the Committee.

Committee found that reply submitted by PP was satisfactory.

After detailed discussion, it was decided to recommend the project to SEIAA Gujarat for grant of Environmental Clearance.

4	SIA/GJ/IND2/29667/2018	M/s: Meridian Chem Bond Pvt. Ltd. (Unit-	TOR – Reconsideration
		III)	
		Plot No. 5906/4, GIDC-Ankleshwar,	
		Bharuch.	

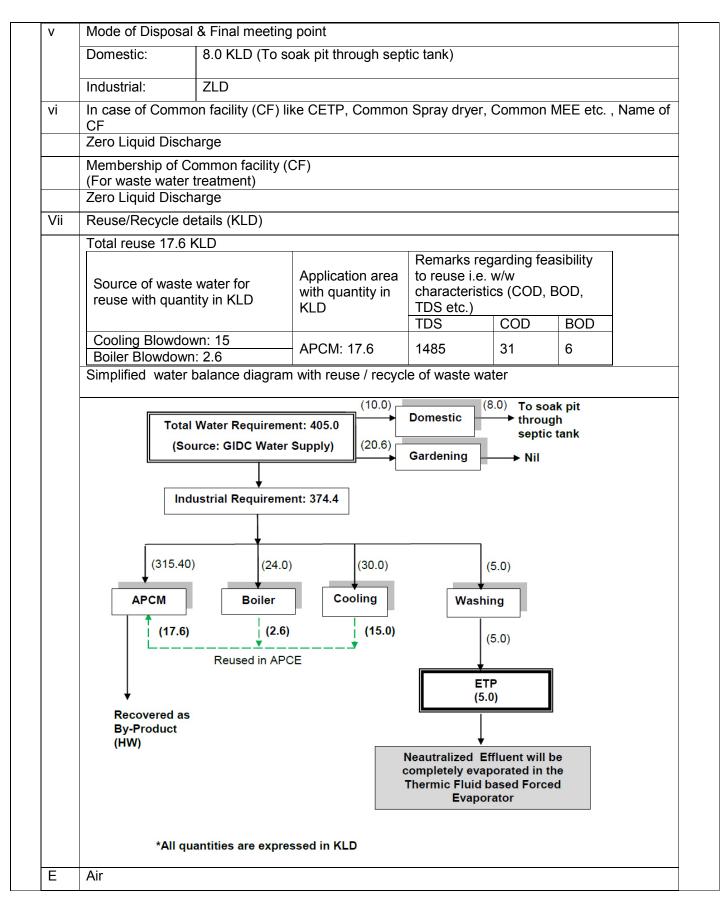
Category of the unit : 5(f) Project status: Expansion

This office has received an application vide their online proposal no. SIA/GJ/IND2/29667/2018 dated 18/11/2018 made by project proponent (PP) regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report. Project proponent (PP) has submitted Form-1, PFR and relevant details/information.

This is an expansion unit and proposes for expansion of Synthetic Organic Chemicals manufacturing plant as tabulated below:

Sr.	Name of Products	CAS No.	*Capacity, TPM			_ End-Use
No.	Name of Froducts	CAO NO.	Е	Р	Т	_ Liid-O3C
Synth	etic Organic Chemicals					
	Mono Chloro Acetic Acid (MCAA)	79-11-8	700	2,100	2,800	
	ChloroAcetyle Chloride (CAC)	79-04-9	Nil	250	250	Intermediate for Pharmaceuticals
	Try ChloroAcetyle Chloride (TCAC)	76-02-8	Nil	750	750	
	Sulphur Mono Chloride (SMC)	10025-67-9	Nil	750	750	Intermediate for Sulphur Dyes
	Sodium Mono Chloro Acetate	3926-62-3	Nil	750	750	Intermediate for Pharmaceuticals, Dye stuff, Textile chemicals
Total			700	4,600	5,300	
Inorga	anic Chemical			1	1	-1

	Calcium Chloride	10043-52-4	Nil	2,500	2,500	
	Di Calcium Phosphate	7757-93-9	Nil	1,000	1,000	For manufacturing of specialty chemicals
	Chlorosulphonic Acid	7790-94-5	Nil	1,000	1,000	
Total			Nil	4,500	4,500	
	d Total (Synthetic Organic C anic Chemicals)	hemicals +	700	9,100	9,800	
Grand			700		,	


^{*}E: Existing, P: Proposed, T: Total after proposed expansion

The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006. PP was called for presentation in the SEAC meeting dated 23/10/2018.

Salient features of the project are as under:

Sr. No.	Particulars		Details		
Α	Total cost of proposed Project (Rs. in Crores):		Existing: 10.53Cr.		
	(16. 11 616166).		Proposed: 24.55 Cr		
			Total: 35.08 Cr.		
В	Total Plot area (sq. meter)		Existing: 30,613 Sq. m.		
	,	Proposed: 0 Sq. m.			
	O L III T DI LI		Total: 30,613 Sq. m.		
	Green belt area,/Tree Plantation area (sq. meter)		Existing: 4000 Sq. m.		
			Proposed: 6200 Sq. m.		
			Total: 10,200 Sq. m.		
С	Employment generation	Existing: 103 Nos.			
			Proposed: 112 Nos.		
_	M. I.	Total: 215 Nos.			
D	Water				
i	Source of Water Supply		GIDC water supply		
	(GIDC Bore well, Surface water, Tanko	er supply			
	etc.)				
	Status of permission from the concern	authority.	Permission obtained from GIDC		
ii	WATER CONSUMPTION (KLD)				
	Sr. No. Particulars	Stream	*Water Requirement, KLD E P T		

	1,	Domestic	[rook	5 O		10.0			
			Fresh	5.0	5.0	10.0			
	 	Other Use (Gardening)	Fresh	8.0	12.6	20.6			
	Indu	strial	Te T	47.5	007.0	1045.4			
	Α	APCE	Fresh	47.5	267.9	315.4			
	D	Boiler	Reuse	3.5 18. 0	14.1 6.0	*17.6			
	B	Cooling	Fresh Fresh	25.0	5.0	30.0			
	D	Washing	Fresh	2.0	3.0	5.0			
		strial Consumption &	Fresh+ Reuse	96.0	296.0	392.0			
		eration	Reuse	3.5	14.1	17.6			
			Fresh	92.5	281.9	374.4			
	Tota	Il Water Consumption +III)	Fresh	105.5	299.5	405.0			
lii		Fresh water requirement: 4 e water generation (KLD)		*W/V	*W/W Generation, KLD				
	No.	Particulars	Stream	E	P	T			
	I	Domestic	Fresh	5.0	3.0	8.0			
	П	Other Use (Gardening)	Fresh	Nil	Nil	Nil			
	Industrial								
	Α	APCE	Fresh Reuse	#Nil	#Nil	#Nil			
	В	Boiler	Fresh	1.0	1.6	*2.6			
	С	Cooling	Fresh	0.5	14.5	*15.0			
	D	Washing	Fresh	2.0	3.0	5.0			
	Indu	strial Consumption &	Fresh+ Reuse	3.5	19.1	22.6			
		eration	Reuse	3.5	14.1	*17.6			
			Fresh	Nil	#5.0	#5.0			
	Tota (I +II	Il Water Consumption +III)	Fresh	5.0	3.0	8.0			
	Note: # The output from APCE will be recovered as hazardous wastes and will be captively reused or sold to GPCB authorized end-users *Effluent generated from boiler blow down @ 2.6 KLD and cooling @ 15.0 KLD will be reused in APCE. #Washing @ 5.0 will be treated in proposed ETP and will be completely evaporated by means of Thermic Fluid based forced evaporator.								
		xisting, P: Proposed, T: Tot		expansion	1				
	Treatment facility within premises with capacity [In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc.								
iv				Stringe	r Spray Dry	er STP etc			
iv	[In-hc		ary, Tertiary), MEE	Strippe	r, Spray Dry	er, STP etc.			

	Sr. No.	Stack Attach to			Height (m)	Dia. (m)	cities viz. TF Conc. of Polluant s	Air Pollut Control Mesures	tion		
	1	Steam Boiler-1 (3 TPH)	Existin	ıg	11	0.6	- PM ≤	Stack of Adequate Height			
	2	Steam Boiler-2 (10 TPH)	Propos	sed	30	1.5	150 mg/Nm3 - SO2 ≤	Stack of Adequate Height	9		
	3	DG Set (600 kVA)	Propos (Stand		7.0	0.15	100 ppm NOx ≤ - 50 ppm	Stack of Adequate Height			
	4	4 kVA) (S		roposed 7.		0. 5		Stack of Adequate Height			
ii	Proce	ess gas i.e. Type	of polluta)2, HCl,	-	,			
	Sr No.	Stack attached to Reactor	Status	Height& Dia. (m)	Cor	lutant n. /Nm3	Air Pollution First Stage	Second Stage	Measure Third Stage	es	
	1	Product 1,	Existing Proposed	12 8 0.08		l≤ 20 ≤ 09	Water Scrubber (A)	Water Scrubb er (B)	Alkali Scrubb (C)	per	
	1.		Propos ed	12 8 0.08	Cl2	l≤ 20 ≤ 09 2≤ 200	Water Scrubber (D)	Alkali Scrubb er (E)	Alkali Scrubb (F)	per	
	2.		Propos ed	12 8 0.08	k HCI	l ≤ 20	Water Scrubber (G)				
iii		ve emission deta	ails with it	s mit	igation n	neasure	S.				
	well a	will be a chance s due to storage ution for the con	& handli	ng of	raw ma	terials a	nd products	. The unit t	takes foll	lowing	
	Pro	bable Sources		Co	ontrol Me	easures					
	Manufacturing activities during charging into reactors				Liquid raw materials are charged by pumping & closed loops. Dosing is done by metering system to avoid fugitive emissions. Dedicated measuring tanks are provided to each						

				<u> </u>							
		apor from v				s will be ad	opted, workers				
		ation and d	ryıng	shall be prov		and the second	اممام				
	area			Fume extraction systems will be provided, wherever required Breather valves, PSVs, Rupture disc, Vapor							
	<u> </u>										
		rom bulk sto	orage			•					
	tanks durin				tem are insta	alled for pro	cess/storage				
	loading, un	loading		tank vents.							
				Unit adopts b							
				and avoid us	age of drum	s/carboys to	or such				
				materials							
		chemical s	torage	Dedicated st							
	area			Adequate ve							
				All the contain							
				Trolley/Forkli	it is used for	transier or	drums and				
				containers	adarana ma	ata ia muafan	ably during				
				Transfers of							
	Dump and	oomprooce	r	day time. Tra							
	Emissions	compresso	ı	agitators	scais are pro	wiu c u iii pu	iliho alin				
	LIIIISSIUIIS			Standby arra	ngement for	critical and	inment and				
				parts is ensu		Critical equ	iipiniciit and				
				Drip trays wil		or each nu	mn to collect				
				leakages and		or caon par	inp to concet				
	Pressure re	elief valve		For highly pr							
		om pipeline	es	are connected in case of toxic gases.							
	Valves, Fla	inges, plugs	s and	Welded pipes are used wherever feasible.							
	instrument	connection	S	Suitable gasket materials are used.							
					Suitable glad packing is used in valves.						
					Periodic inspection and maintenance of pipes and						
				pipe fittings is carried out. Closed loop system is used. Provision of dedicated storage area Adequate ventilation system to be provided							
		om sampling									
		chemical s	torage								
	area										
				All the containers will be kept tightly closed							
				Trolley/Forklift will be used for transfer of drums and containers							
F	Hazardous w	vactor		and containe	15						
Γ			nd Other	Wastes (Mar	agement an	nd Transhoi	undary Movement	\ Rules			
	2016.		ila Otilici	Wasies (Mai	lagement an	id ITalisbot	andary Wovernerit) IXuics			
			Catego	r Quantity	per Annum						
İ	Type of	. 1.200006					Method of Disposal				
İ	Type of waste	Source	_		Proposed	Total					
j	Type of waste		y	Existing	Proposed	Total		rage			
i	waste	ETP	у	Existing			Collection, Sto				
j	waste	ETP (Evapor	y Sch - I		Proposed 2 MT	Total 2 MT	Collection, Stor	and			
<u> </u>	waste	ETP	у	Existing			Collection, Stor Transportation Disposal by lar	and			
	waste	ETP (Evapor	y Sch - I	Existing			Collection, Stor Transportation Disposal by lar filling at TSDF	and			
	waste	ETP (Evapor	y Sch - I	Existing			Collection, Stor Transportation Disposal by lar filling at TSDF Collection, Stor	and nd rage,			
	waste	ETP (Evapor ator)	y Sch - I	Existing			Collection, Stor Transportation Disposal by lar filling at TSDF Collection, Stor Transportation	and nd rage,			
i	waste Evaporatio n Salt	ETP (Evapor ator)	y Sch - I 35.3	Existing	2 MT	2 MT	Collection, Stor Transportation Disposal by lar filling at TSDF Collection, Stor Transportation Disposal by co-	and nd rage,			
i	waste Evaporatio n Salt Process	ETP (Evapor ator) Process (Product	y Sch - I 35.3	Existing			Collection, Stor Transportation Disposal by lar filling at TSDF Collection, Stor Transportation Disposal by co- processing on	and nd rage,			
i	waste Evaporatio n Salt	ETP (Evapor ator)	y Sch - I 35.3	Existing	2 MT	2 MT	Collection, Stor Transportation Disposal by lar filling at TSDF Collection, Stor Transportation Disposal by co- processing on priority, if not	and nd rage,			
İ	waste Evaporatio n Salt Process	ETP (Evapor ator) Process (Product	y Sch - I 35.3	Existing	2 MT	2 MT	Collection, Stor Transportation Disposal by lar filling at TSDF Collection, Stor Transportation Disposal by co- processing on	rage,			

								CHWIF
	Solid Waste (Inorganic Waste)	Process (Product 6 & 7)	Sch - I 28.1	Nil	3,433	MT	3,433 MT	Collection, Storage, Transportation and Disposal by land filling at TSDF
	Mother Liquor of MCAA	Process (Product 1)	Sch-II C2	3,000 MT	9,466	МТ	12,465 MT	Collection, Storage, Transportation &
	NaHSO3 Solution (21%)	APCM- (Product 2)	Sch-II C2		14,49 MT	8	14,498 MT	Disposal by sell to GPCB authorized end-user having
	NaOCI Solution (14.5%)	APCM- (Product 1, 3 & 4)	Sch-II C2	4,200 MT	46,52 MT	7	50,727 MT	permission under Rule 9.
	Hydrochlor ic Acid (30%)	APCM (Product 1, 2, 3)	Sch-II C2	16,800 MT	63,47 MT	′4	80,274 MT	Collection, Storage, Transportation & Disposal by sell to GPCB authorized end-user having permission under Rule 9 OR Captively reused within premises for manufacturing of Inorganic Chemicals
	Spent Oil/ Used Oil	Plant & Machine ries	Sch - I 5.1	2 Lit	5 Lit		7 Lit	Collection, Storage, Transportation, sell to registered Re- processor / MoEF&CC approved recyclers on priority, if not available Reused as Lubricant within premises
	Discarded Bags/ Liners/Dru ms/ Carboys/ Containers	Raw Material Storage	Sch-I 33.1	360 Nos	4,890 Nos	1	5,250 Nos	Collection, Storage, and Disposal by selling to scrap vendors
	Membership (For HW man		SDF, CHWI	F etc.		additi from	onal hazard GPCB appr	ermission for disposal of lous waste generated oved CHWIF/TSDF.
ii G	Details of Nor (MSW and ot	hers)		<u> </u>			pplicable	
J	Solvent mana				% reco		pplicable	covered Solvents
	Types of Solv	cins, Detail	s or solven	i recovery,	70 TECO	νeιy.	reuse of re	COVERED SUIVERIES

ii	VOC emission sources and its mitigation measures	
	As mentioned in section E (iii) above.	

Technical presentation was made by the project proponent.

Committee deliberated on water balance, waste water & HW management, Safety aspects for Chlorine & other Hazardous chemicals, Process hazard for Hydrogenation, Adequacy of ZLD, CEMS etc.

Committee found that management of waste streams like spent HCl, justification for adequacy of area & compliance status with respect to Notices/ Closure issued by GPCB is not satisfactorily addressed.

After detailed discussion, it was decided to consider the proposal in one of the upcoming SEAC meeting only after submission of the following:

Details with respect to justification for proposed expansion: (1) To address proportionate availability of space for production plant. (2) To address proportionate availability of storage area for raw materials finished goods, utilities and goods carrier movement within premises. (3) To address proportionate captive/common infrastructure available to accommodate additional load due to proposed expansion. (4) Environment impact and its mitigation measures for common/ captive infrastructure due to proposed production.

Action plan for compliance of notices/Closure issued by GPCB in last 2 years.

Sound management of hazardous waste streams like spent HCI.

PP has submitted reply for the above additional details sought vide letter on 05/02/2019.

The project was considered in SEAC meeting dated 06/02/2019.

PP has submitted their reply as below:

PP has satisfactorily address proposed expansion proportionately with availability of space for storing raw materials, products, goods carrier movement, erection of new plant/ vertical expansion of existing plant and available common/ captive environmental infrastructure with mitigation measures of environmental impacts. PP has submitted compliance of notices/closer issued by GPCB in last two years.

PP has submitted Letter of Intent (LOI) for proposed end users and MoU for existing end users for sound management of hazardous waste stream like spent HCL.

Considering the above project details, after detailed discussion, the terms of reference (ToR) were prescribed as below and as per the standard TOR for the Synthetic Organic Chemical projects recommended by SEAC vide letter no. EIA-10-GEN-21/1480 dated 14/09/2017 and approved by SEIAA in its 12th meeting dated 16/09/2017 for the EIA study to be done covering 10 Km radial distance from the project boundary.

Compliance of MoEFCC's OM dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER). Fund allocation for Corporate Environment Responsibility (CER) shall be made as per MoEFCC's O.M. No. 22-65/2017-IA.III dated 01/05/2018 for various activities therein. The details of fund allocation and activities for CER shall be incorporated in EIA/EMP report.

Explore the use of renewable energy to the maximum extent possible. Details of provisions to make the project energy-efficient through energy efficient devices and adoption of modes of alternative eco-friendly sources of energy like solar water heater, solar lighting etc. Measures proposed for energy conservation.

PP shall address spent solvent with details of storage, handling and re-use under the Hazardous and other Waste (Management and Transboundary Movement) Rules 2016.

Leak Detection and Repairing Programme (LDAR) for all the volatile organic solvent proposed for use in-house with detailed chemical properties including vapor pressure. LDAR shall endeavor prevention of losses of solvents to the best minimum extent.

PP shall furnish status of all the applicable rules, acts, regulation, clearances in a tabular form

Safety precautions including flame proof electric fittings to be taken to avoid fire hazard during unloading, storage, transportation, handling and processing of Solvents

Treatability & adequacy report for complete ZLD for additional waste water. Feasibility report for complete reuse condensate waste water for industrial purpose.

MoU with proposed end users for spent HCL shall be produce at the time of EC – Appraisal for which the Letter of Intent (LOI) has been submitted.

The TOR prescribed as above and as per the standard TOR approved by SEIAA and the model ToRs available in the MoEFCC's sector specific EIA Manual for 'Synthetic Organic Chemical Industry' shall be considered as generic TORs for preparation of the EIA report in addition to all the relevant information as per the generic structure of EIA given in Appendix III in the EIA Notification, 2006.

The project proponent shall have to apply for Environmental clearance through online portal http://environmentclearance.nic.in/ along with final EIA report.

5	SIA/GJ/IND2/21548/2018	M/s. Kanoria Chemicals & Industries Ltd. Plot No. 3407, GIDC Estate, Ankleshwar,	TOR – Amendment
	von cof the unit (F/f)	Dist: Bharuch - 393002, Gujarat.	
_	gory of the unit : 5(f) ct status: Expansion		
TOJEC	ct status. Expansion		
SEIA/	A has accorded ToR ITerms of Refe	erence] to M/s. Kanoria Chemicals & Industries I	td. vide letter no.
	A/GUJ/TOR/5(f)/781/2018 dated 31/		
		e vide proposal no. SIA/GJ/IND2/21548/2018 da	ated 29/11/2018 for
_	dment in ToR.		
		e product "(1) Calcium Format – 1500 MT/Month	
		AC meeting dated 06/02/2018. During the meeting	ng, Committee observed
	nere is addition of product in the pro		
		call the PP for presentation along with their exp	ert/consultant in the
•	ming meeting of SEAC.	M/a Fasinat Dali in la at la di satini	With drawal TOD
6	SIA/GJ/IND2/28247/2018	M/s. EcopetPolyplast Industry	Withdrawal - TOR
		Plot No: 121, G.I.D.C.Kalol, Dist: Gandhinagar.	
hie c	office has received an application vis	de their online proposal no. SIA/GJ/IND2/28247	 2018 dated 10/08/2018
		ToR) for preparation of EIA/EMP report.	72010 dated 10/00/2010
	er, PP was called for presentation da		
		ndrawal of an application in this regard vide date	d 02/02/2019.
	osal was considered in the SEAC me		
		on because they approached to GPCB for dispos	sal of 26.5 KLD waste
vater	to be generated from synthetic inor	rganic dyes to CETP, Kalol. This demand is bas	ed on disposable quanti
f trea	ated waste water generate from exis	sting product PET Flakes manufacturing activity	. GPCB has informed
of treat hat C	ated waste water generate from exis EETP Kalol is not functioning as per		. GPCB has informed
of treat hat C quant	ated waste water generate from exist CETP Kalol is not functioning as per ity for disposal into CETP.	sting product PET Flakes manufacturing activity the GPCB norms and GPCB is not ready to allo	. GPCB has informed w such alternate effluer
of treathat Clubration	ated waste water generate from exis CETP Kalol is not functioning as per ity for disposal into CETP. have work out feasibility of ZLD (Ze	sting product PET Flakes manufacturing activity the GPCB norms and GPCB is not ready to allow to Liquid Discharge) for generated effluent 26.5	. GPCB has informed bw such alternate effluer KLD from synthetic
of treat hat C luant hey l organ	ated waste water generate from exiscETP Kalol is not functioning as per ity for disposal into CETP. have work out feasibility of ZLD (Ze ic dyes. Current market and price s	sting product PET Flakes manufacturing activity the GPCB norms and GPCB is not ready to allow to Liquid Discharge) for generated effluent 26.5 scenario, ZLD is not viable in their case; hence the	GPCB has informed by such alternate effluer KLD from synthetic ney have decided to dro
of treat hat C luant hey l organ he pr	ated waste water generate from exist CETP Kalol is not functioning as per ity for disposal into CETP. have work out feasibility of ZLD (Ze ic dyes. Current market and price seroject of S. O. Dyes at this location.	sting product PET Flakes manufacturing activity the GPCB norms and GPCB is not ready to allow to Liquid Discharge) for generated effluent 26.5 scenario, ZLD is not viable in their case; hence the They will revert back very soon with low / no liquid.	GPCB has informed ow such alternate effluer KLD from synthetic ney have decided to dro uid pollution load
f treat Cuantiney Indicate from the properties of the produce of t	ated waste water generate from exist ETP Kalol is not functioning as perity for disposal into CETP. have work out feasibility of ZLD (Zenic dyes. Current market and price stoject of S. O. Dyes at this location. locts with new application. Hence, the	sting product PET Flakes manufacturing activity the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the CPCB is not viable in their case; hence the CPCB will revert back very soon with low / no liquely request to close down their current applications.	GPCB has informed by such alternate effluer KLD from synthetic ney have decided to drouid pollution load n of ToR.
of treat hat C luant hey he brodu he produ n viev	ated waste water generate from exist ETP Kalol is not functioning as perity for disposal into CETP. have work out feasibility of ZLD (Zenic dyes. Current market and price stoject of S. O. Dyes at this location. locts with new application. Hence, the	sting product PET Flakes manufacturing activity the GPCB norms and GPCB is not ready to allow to Liquid Discharge) for generated effluent 26.5 scenario, ZLD is not viable in their case; hence the They will revert back very soon with low / no liquid.	GPCB has informed by such alternate effluent KLD from synthetic ney have decided to dropuld pollution load n of ToR.
of treathat Cluant They brgan The production view The broduction view	ated waste water generate from exist ETP Kalol is not functioning as perity for disposal into CETP. have work out feasibility of ZLD (Zelic dyes. Current market and price stoject of S. O. Dyes at this location. Incts with new application. Hence, the wof the above, Committee decided	sting product PET Flakes manufacturing activity the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the control of t	GPCB has informed ow such alternate effluent KLD from synthetic ney have decided to dropuid pollution load n of ToR. oplications & to close the
f treat uant hey rgan ne pr rodu n viev	ated waste water generate from exist ETP Kalol is not functioning as perity for disposal into CETP. have work out feasibility of ZLD (Zenic dyes. Current market and price stoject of S. O. Dyes at this location. locts with new application. Hence, the	sting product PET Flakes manufacturing activity the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the control of	GPCB has informed by such alternate effluent KLD from synthetic ney have decided to dropuid pollution load n of ToR. Withdrawal – EC-
f treat Cuant hey rgan rodun vievel	ated waste water generate from exist ETP Kalol is not functioning as perity for disposal into CETP. have work out feasibility of ZLD (Zelic dyes. Current market and price stoject of S. O. Dyes at this location. Incts with new application. Hence, the wof the above, Committee decided	sting product PET Flakes manufacturing activity the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the Company of the GPCB norms and GPCB is not ready to allow the Company of the GPCB norms and GPCB is not viable in their case; hence the Company of	GPCB has informed by such alternate effluer KLD from synthetic ney have decided to drouid pollution load n of ToR. oplications & to close the
f treat Cuant hey largan ne produce view le.	ated waste water generate from exist EETP Kalol is not functioning as per lity for disposal into CETP. have work out feasibility of ZLD (Zenic dyes. Current market and price stoject of S. O. Dyes at this location. Lets with new application. Hence, the work of the above, Committee decided SIA/GJ/IND2/29725/2013	sting product PET Flakes manufacturing activity the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the control of	GPCB has informed by such alternate effluer KLD from synthetic ney have decided to drouid pollution load n of ToR. oplications & to close the Withdrawal – EC-Amendment
f treat Cuant hey rgan ne produce.	ated waste water generate from exist EETP Kalol is not functioning as per lity for disposal into CETP. have work out feasibility of ZLD (Zenic dyes. Current market and price stoject of S. O. Dyes at this location. Lets with new application. Hence, the work of the above, Committee decided SIA/GJ/IND2/29725/2013 is office has received an application.	sting product PET Flakes manufacturing activity the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not ready to allow	CBPCB has informed by such alternate effluer KLD from synthetic ney have decided to drouid pollution load n of ToR. oplications & to close the Withdrawal – EC-Amendment
f treat Count in the production view le. Thi 25/PP	ated waste water generate from exist ETP Kalol is not functioning as perity for disposal into CETP. have work out feasibility of ZLD (Zenic dyes. Current market and price stoject of S. O. Dyes at this location. Incts with new application. Hence, the work of the above, Committee decided SIA/GJ/IND2/29725/2013 SIA/GJ/IND2/29725/2013 It is office has received an application of the above and the properties of the submitted a letter requesting we has submitted a letter requesting was period of the properties of th	sting product PET Flakes manufacturing activity the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB is not viable in their case; hence the GPCB will revert back very soon with low / no liquely request to close down their current application to delist the proposal from the list of pending and GPCB plot No. CH-5/1, GIDC Estate, Dahej, Tal: Vagra, Dist: Bharuch or vide their online proposal no. SIA/GJ/IND2/297 of Reference (ToR) for preparation of EIA/EMP revithdrawal of an application in this regard vide dispersion.	KLD from synthetic ney have decided to drouid pollution load n of ToR. Withdrawal – EC-Amendment 25/2013 dated
f treat Count in the product of the	ated waste water generate from exist ETP Kalol is not functioning as per lity for disposal into CETP. have work out feasibility of ZLD (Zenic dyes. Current market and price stoject of S. O. Dyes at this location. Incts with new application. Hence, the work of the above, Committee decided SIA/GJ/IND2/29725/2013 Its office has received an application of 12/2018 regarding grant of Terms of the submitted a letter requesting work oposal was considered in the SEAC	sting product PET Flakes manufacturing activity the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not ready to allow the	CAMENDA STATE OF THE STATE OF T
f treat Count in the product of the	ated waste water generate from exist ated waste water generate from exist EETP Kalol is not functioning as per lity for disposal into CETP. have work out feasibility of ZLD (Zenic dyes. Current market and price stoject of S. O. Dyes at this location. Incomplete with new application. Hence, the work of the above, Committee decided SIA/GJ/IND2/29725/2013 It is office has received an application of the second and the second proposal was considered in the SEAC of requested to withdraw their application of the second proposal was considered in the SEAC of requested to withdraw their application in the second proposal was considered in the SEAC of requested to withdraw their application in the second proposal was considered in the second proposal wa	sting product PET Flakes manufacturing activity the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB is not viable in their case; hence the GPCB will revert back very soon with low / no liquely request to close down their current application to delist the proposal from the list of pending and GPCB plot No. CH-5/1, GIDC Estate, Dahej, Tal: Vagra, Dist: Bharuch or vide their online proposal no. SIA/GJ/IND2/297 of Reference (ToR) for preparation of EIA/EMP revithdrawal of an application in this regard vide dispersion.	CAMENDA STATE OF THE STATE OF T
f treat Count in the product of the	ated waste water generate from exist ated waste water generate from exist EETP Kalol is not functioning as per lity for disposal into CETP. have work out feasibility of ZLD (Zenic dyes. Current market and price stoject of S. O. Dyes at this location. Incomplete with new application. Hence, the work of the above, Committee decided SIA/GJ/IND2/29725/2013 It is office has received an application of the second proposal was considered in the SEAC prequested to withdraw their application.	sting product PET Flakes manufacturing activity the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not ready to allow their ca	CAMENDA STATE OF CONTROL OF CONTR
of treathat Chart	ated waste water generate from exist EETP Kalol is not functioning as per lity for disposal into CETP. have work out feasibility of ZLD (Zenic dyes. Current market and price stoject of S. O. Dyes at this location. Incts with new application. Hence, the wof the above, Committee decided SIA/GJ/IND2/29725/2013 Is office has received an application of the submitted a letter requesting was possal was considered in the SEAC requested to withdraw their application. View of the above, Committee decided of the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above of the above, Committee decided on the above of the above.	sting product PET Flakes manufacturing activity the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not ready to allow the	CAMENDA STATE OF CONTROL OF CONTR
of treathat Clause Head Production view in the Production view in th	ated waste water generate from exist ated waste water generate from exist EETP Kalol is not functioning as per lity for disposal into CETP. have work out feasibility of ZLD (Zenic dyes. Current market and price stoject of S. O. Dyes at this location. Incomplete with new application. Hence, the work of the above, Committee decided SIA/GJ/IND2/29725/2013 SIA/GJ/IND2/29725/2013 It is office has received an application of the service of the submitted a letter requesting was considered in the SEAC prequested to withdraw their application. Wiew of the above, Committee decides the file.	sting product PET Flakes manufacturing activity the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB nor	CAMENDA STATE OF CONTROL OF CONTR
of treathat Clause that Clause the proof of	ated waste water generate from exist EETP Kalol is not functioning as per lity for disposal into CETP. have work out feasibility of ZLD (Zenic dyes. Current market and price stoject of S. O. Dyes at this location. Incts with new application. Hence, the wof the above, Committee decided SIA/GJ/IND2/29725/2013 Is office has received an application of the submitted a letter requesting was possal was considered in the SEAC requested to withdraw their application. View of the above, Committee decided of the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above, Committee decided on the above of the above, Committee decided on the above of the above.	sting product PET Flakes manufacturing activity the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in their case; hence the GPCB is not viable in the list of pending and the GPCB is not viable in the GPCB is not viable. The GPCB is not viable in the GPCB is not viable in the GPCB is not viable in the GPCB is not viable. The GPCB is not viable in their case; hence the GPCB is not viable in	CGPCB has informed by such alternate effluer KLD from synthetic ney have decided to droud pollution load nof ToR. oplications & to close the Withdrawal – EC-Amendment Withdrawal – EC-Amendment 25/2013 dated report. ated 04/02/2019. EC – Amendment applications & to EC -
of treathat Clause Head Production view in the Production view in th	ated waste water generate from exist ated waste water generate from exist EETP Kalol is not functioning as per lity for disposal into CETP. have work out feasibility of ZLD (Zenic dyes. Current market and price stoject of S. O. Dyes at this location. Incomplete with new application. Hence, the work of the above, Committee decided SIA/GJ/IND2/29725/2013 SIA/GJ/IND2/29725/2013 It is office has received an application of the service of the submitted a letter requesting was considered in the SEAC prequested to withdraw their application. Wiew of the above, Committee decides the file.	sting product PET Flakes manufacturing activity the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB is not ready to allow the GPCB norms and GPCB nor	CFCB has informed by such alternate effluer KLD from synthetic ney have decided to droud pollution load nof ToR. oplications & to close the Withdrawal – EC-Amendment Withdrawal – EC-Amendment 25/2013 dated report. ated 04/02/2019. EC – Amendment EC – Reconsideration

PP has submitted online application vide no. SIA/GJ/MIS/19236/2017 dated 25/12/2018 for obtaining

Category of the unit : 7(h)
Project status: Expansion

Environmental Clearance.

The SEAC had recommended TOR to SEIAA and SEIAA issued TOR to PP vide their letter SEIAA/GUJ/7h/327/2018, dated 28/03/2018.

Project proponent has submitted EIA Report prepared by SUNRISE ENVIRONMENT CONSULTANT based on the TOR issued by SEIAA.

Public Hearing was conducted by Gujarat Pollution Control Board on 30/10/2018 at project site of M/s.TheNarol Dyestuff Enviro Society (CETP),Plot No.108/4, Near Kumar Cotton Mills, Narol court, Narol, Dist-Ahmedabad.

This is an existing CETP and now proposes for expansion of CETP capacity as tabulated below:

Sr.	Name of the Products	Quantity MT	/Month		End-use of the
no.		Existing	Proposed	Total	products
		KLD	KLD	KLD	
1	Treatment of Effluent From Various Industries (Design Capacity)	40	410	450	Treatment of industrial Effluent

The project falls underCategory B of project activity 7(h) asper the schedule of EIA Notification 2006. PP was called for presentation in the SEAC meeting dated 07/01/2019. Salient features of the project are as under:

Sr.	Particulars				Details		
no.							
Α	Total cost of Proposed F	Project			Existing: Rs.	40 Lakhs	
	(Rs. in Crores):	,			Proposed: Rs		
	,				Total: Rs. 345	5 Lakhs (3.45	
					Crore)	-	
В	Total Plot area				Existing: 1600		
	(sq. meter)				Proposed: Nil		
					Total: 1600 S		
	Green belt area				Existing: 50 s		
	(sq. meter)				Proposed: 50	0 (outside	
					premises)		
	Fuereles mesent a en enetiene					n. + 500 sq.m	
С	Employment generation				Existing:10 Proposed:02		
					Total Manpov	vor:12	
D	Water				Total Manpov	VCI. 12	
i	Source of Water Supply	(GIDC Bore	well Surface	e water Tanker	Tanker supply		
'	supply etc.)	(CIDO, DOIC	wen, earlas	e water, ranker	Turiker suppr	y	
	Status of permission fro	m the concerr	n authority.		Not Applicabl	<u>е</u>	
ii	Water consumption (KL				1-1		
	, ,	,					
			Existing	Proposed	Total after		
	Category	Stream	KLD	(Additional)	Expansion	Remarks	
				KLD	KLD		
	Domestic	Fresh	2.0	0.5	2.5		
	Gardening	Recycle	1.0	1.0	2.0		
	Industrial						
	Process	Fresh					
	Washing (Floor	Fresh	2.0	3.0	5.0		
	washing)		2.0	0.0	0.0		
	Boiler						
	Cooling						
	Laboratory	Fresh	2.0	3.0	5.0		

Total water requirement for the project: 14.5 KLD	Grai	strial Total nd Total (A+B+0			4.0 7.0	6.0 7.5		10.0 14.5			
Waste water generation (KLD)	Quan	tity to be recycle	ed: 1.0	KLĎ)					
Name		· · · · · · · · · · · · · · · · · · ·									
Domestic	Cate	egory			(Addit		Expansio				
Process	Dom	nestic	1.7	0							
Washing 2.0 3.0 5.0	Indu	strial	l		II.		I				
Boiler		Process									
Cooling			2.0		3.0		5.0				
Laboratory											
Total Industrial waste water		0					+				
Treatment facility within premises with capacity [For existing and Proposed] [In-house ETP (Primary, Secondary, Tertiary), MEE, Stripper, Spray Dryer, STP etc. The effluent generated shall be taken to proposed CETP inlet and shall be treated along with effluent and disposed into mega pipeline. Details of the ETP Units (ETP Adequacy) Sr. Description Nos. Dia, (m) Length, (m) Width Depth, (m3 Time, hrs.	Tota	I Industrial wast		0							
The effluent generated shall be taken to proposed CETP inlet and shall be treated along with effluent and disposed into mega pipeline. Details of the ETP Units (ETP Adequacy) Sr. Description Nos. Dia, (m) Length, (m) Width (m) Depth, (m3 Time, hrs.) 1. Equalization 2 14 3.0 4.50 378.0 25.92 2. Flash Mixer 1 3.0 3.0 3.0 27.0 1.85 3. Flocculator 1 3.0 3.0 3.0 27.0 1.85 4. Primary 1 6.00 3.50 99.0 6.79 5. Aeration 1 15.0 6.50 5.50 536.3 36.77 Tank 1 15.0 6.50 5.50 536.3 36.77 6. Secondary Clarifier 1 7.00 3.50 134.7 9.24 7. Treated Water Sump 1 17.50 4.00 4.50 315.0 21.60 8. Sand Filter 1 2.00 2.80 8.8 0.60 9. Carbon Filter 1 2.20 2.80 8.8 0.60 9. Carbon Filter 1 2.20 2.80 8.8 0.60 11. Lab Room & 1 6.50 3.00 3.50 36.0 12. Filter Press 1 6.00 6.00 2.47 Effluent 13. Discharge 0.11	Treat	ment facility with							TD ata		
1 ank 1 3.0 3.0 3.0 27.0 1.85 3. Floculator 1 3.0 3.0 3.0 27.0 1.85 4. Primary 1 6.00 3.50 99.0 6.79 5. Aeration 1 15.0 6.50 5.50 536.3 36.77 6. Secondary Clarifier 1 7.00 3.50 134.7 9.24 7. Treated Water Sump 1 17.50 4.00 4.50 315.0 21.60 8. Sand Filter 1 2.00 2.80 8.8 0.60 9. Carbon Filter 1 2.20 2.80 10.6 0.73 10. Sludge Sump 1 4.00 4.00 50.3 11. Lab Room & Office Room 1 6.50 3.00 3.50 36.0 12. Filter Press 1 6.00 6.00		Equalization		Dia, (III)	` ′		` ′	•	-		
3. Flocculator 1 3.0 3.0 3.0 27.0 1.85 4. Primary Clarifier 1 6.00 3.50 99.0 6.79 5. Aeration Tank 1 15.0 6.50 5.50 536.3 36.77 6. Secondary Clarifier 1 7.00 3.50 134.7 9.24 7. Treated Water Sump 1 17.50 4.00 4.50 315.0 21.60 8. Sand Filter 1 2.00 2.80 8.8 0.60 9. Carbon Filter 1 2.20 2.80 10.6 0.73 10. Sludge Sump 1 4.00 4.00 50.3 11. Lab Room & Office Room 1 6.50 3.00 3.50 36.0 12. Filter Press 1 6.00 6.00 13. Di	1.		2		14	3.0	4.50	378.0	25.92		
4. Primary Clarifier 1 6.00 3.50 99.0 6.79 5. Aeration Tank 1 15.0 6.50 5.50 536.3 36.77 6. Secondary Clarifier 1 7.00 3.50 134.7 9.24 7. Treated Water Sump 1 17.50 4.00 4.50 315.0 21.60 8. Sand Filter 1 2.00 2.80 8.8 0.60 9. Carbon Filter 1 2.20 2.80 10.6 0.73 10. Sludge Sump 1 4.00 4.00 50.3 11. Lab Room & Office Room 1 6.50 3.00 3.50 36.0 12. Filter Press 1 6.00 6.00 13. Discharge Pipeline 0.11											
4. Clarifier 1 6.00 3.50 99.0 6.79 5. Aeration Tank 1 15.0 6.50 5.50 536.3 36.77 6. Secondary Clarifier 1 7.00 3.50 134.7 9.24 7. Treated Water Sump 1 17.50 4.00 4.50 315.0 21.60 8. Sand Filter 1 2.00 2.80 8.8 0.60 9. Carbon Filter 1 2.20 2.80 10.6 0.73 10. Sludge Sump 1 4.00 4.00 50.3 11. Lab Room & Office Room 1 6.50 3.00 3.50 36.0 12. Filter Press 1 6.00 6.00 13. Discharge Pipeline 0.11	3.		1		3.0	3.0	3.0	27.0	1.85		
5. Tank 1 15.0 6.50 5.50 536.3 36.77 6. Secondary Clarifier 1 7.00 3.50 134.7 9.24 7. Treated Water Sump 1 17.50 4.00 4.50 315.0 21.60 8. Sand Filter 1 2.00 2.80 8.8 0.60 9. Carbon Filter 1 2.20 2.80 10.6 0.73 10. Sludge Sump 1 4.00 4.00 50.3 11. Lab Room & Office Room 1 6.50 3.00 3.50 36.0 12. Filter Press 1 6.00 6.00 2.47 Effluent 1 0.11 13. Discharge Pipeline 0.11 </td <td>4.</td> <td>Clarifier</td> <td>1</td> <td>6.00</td> <td></td> <td></td> <td>3.50</td> <td>99.0</td> <td>6.79</td>	4.	Clarifier	1	6.00			3.50	99.0	6.79		
6. Clarifier 1 7.00 3.50 134.7 9.24 7. Treated Water Sump 1 17.50 4.00 4.50 315.0 21.60 8. Sand Filter 1 2.00 2.80 8.8 0.60 9. Carbon Filter 1 2.20 2.80 10.6 0.73 10. Sludge Sump 1 4.00 4.00 50.3 11. Lab Room & Office Room 1 6.50 3.00 3.50 36.0 12. Filter Press 1 6.00 6.00 2.47 Effluent 1 13. Discharge Pipeline 0.11	5.	Tank	1		15.0	6.50	5.50	536.3	36.77		
7. Water Sump 1 17.50 4.00 4.50 315.0 21.60 8. Sand Filter 1 2.00 2.80 8.8 0.60 9. Carbon Filter 1 2.20 2.80 10.6 0.73 10. Sludge Sump 1 4.00 4.00 50.3 11. Lab Room & Office Room 1 6.50 3.00 3.50 36.0 12. Filter Press 1 6.00 6.00 2.47 Effluent 1 13. Discharge Pipeline 0.11	6.	Clarifier	1	7.00			3.50	134.7	9.24		
9. Carbon Filter 1 2.20 2.80 10.6 0.73 10. Sludge Sump 1 4.00 4.00 50.3 11. Lab Room & Office Room 1 6.50 3.00 3.50 36.0 12. Filter Press 1 6.00 6.00 2.47 Effluent Discharge Pipeline 0.11		Water Sump	-								
10. Sludge Sump 1 4.00 4.00 50.3 11. Lab Room & Office Room 1 6.50 3.00 3.50 36.0 12. Filter Press 1 6.00 6.00 2.47 Effluent Discharge Pipeline 0.11 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
11. Lab Room & Office Room 1 6.50 3.00 3.50 36.0 12. Filter Press 1 6.00 6.00 2.47 Effluent 13. Discharge Pipeline 0.11		Sludge									
12. Filter Press 1 6.00 6.00 2.47 Effluent 13. Discharge Pipeline 0.11	10.		1		6.50	3.00	3.50	36.0			
13. Discharge 0.11			•			0.00		-	0.47		
- Mode of Disposal & Final meeting point	11.	Office Room	•		6.00	6.00			2.47		
, 5,	11.	Office Room Filter Press Effluent Discharge	1								

		Industria	ı.								taken to and shal effluent.	nent generated sh proposed CETP Il be treated along	inlet
		Industria	I.								The efflutaken to and shall	uent generated sh proposed CETP Il be treated along and disposed into	inlet g with
	vi			mmon facility		e C	ETP, Co	mmc	n Spray	dryer, (MEE, CHWIF etc	D.
		None											
			ship	of Common	facility (C	F)							
		None	4		4\								
	vii			ater treatme ater balance		\a/itk	reuse /	recv	cle of way	ete wa	tor		
	VII	The Prop	ose	d Project is t	for Comm	on	Effluent ⁻	Frea	tment Pla	nt; The	e effluent	generated shall t sposed into mega	
	vii	Rausa/R	'ACV	cle details (K	1 D)								
	VII			use & applic		a]							
		The Prop	ose	d Project is	for Comm	on						generated shall b	
			prop	osed CETP	inlet and	sha	III be trea	ted a	along with	n efflue	ent and di	sposed into mega	a
	E	pipeline. Air											
	i	Flue gas	oilers			ets	etc. with	сара	acities viz	ı. TPH,	Kcal/hr,	MT/hr, KVA etc.	
		Lixiourig	_	ource of	Charle			0		Туре	of	Air Pollution	
		Sr.		mission	Stack Height		ype of	Fue	antity of	emiss	sions	Control	
		no.		ith .	(meter)	Fι	uel		/Day	i.e. A		Measures	
				apacity .G. Set	()				- ,	Pollut PM, S		(APCM)	
		1		.G. Set :50 KVA)	9.0 m	D	iesel			NOX		Stack height	
			gas									gned stacks of 9.	0 m
	ii	Process	gas	i.e. Type of	pollutant o	gas	es (SO2,	HCI	, NH3, CI	2, NO	etc.)		
		⊨xisting	& Pr	oposed: Nil	(Proposed	ı pr	oject is C	<u>, L F</u>	<u>′) </u>				
				Specific Sc	ource of				04-157		A : D : !!		
			Sr.	emission			Type of		Stack/V Height	ent	Air Poll Measur	ution Control	
			no.	(Name of t		ct	emissio	n	(meter)		(APCM		
			<u> </u>	& Process))				(3.2.)		, ,	,	
			1.										
		-											
	iii			sion details							النيسمة		ulor
		For supplinterval.	ress	sion of aust c	iuring con	stri	action & (Jper	ation pna	ise, wa	iter will be	e sprinkled at reg	uiar
			e pla	antation in ar	nd around	pre	emises.						
	F	Hazardo				<u>~·`</u>							

Sr	Type/Na me of	Specific Source of	Catego Quantity ry and (MT/Annum)					Management of HW
no	Hazardou s waste	generation (Name of the Activity, Product etc.)	le as per HW Rules.	Existing	Propose d	Total		
1	ETP Sludge	Effluent Treatment Plant	35.3	3.6 MT/Yea r	32.4 MT/Year	36.0 MT/ Year	Collection, Storage, Transportation, disposal at TSDF	
2	Discarded bags & Container	Raw materials	33.1	480 Nos/Ye ar	6.0 MT/Year	6.0 MT/ Year	Collection, storage, Decontamination, transportation & disposal by selling to authorized recycler	
3	Used oil	Plant & Machineries	5.1	0.005 MT/Yea r	0.055 MT/Year	0.06 0 MT/ Year	Collection, Storage, Transportation, disposal by selling to registered refiner	
	•	ils of TSDF, CH	WIF etc.			Memb	pership of SEPPL	
	HW manage ils of Non-Ha	ment) azardous waste	& its dispos	sal(MSW a	and others)			
Solve	ent managen	nent, VOC emiss	sions etc.					

During the meeting dated 07/01/2019, technical presentation made during the meeting by project proponent. During the meeting, the project was appraised based on the information furnished in the EIA Report, various issues raised during the public hearing and details presented during the meeting.

The baseline environmental quality has been assessed for various components of the environment viz. air, noise, water, biological and socioeconomic aspect. The baseline environmental study has been conducted for the study area of 10 km radial distance from project site for the period October 2017 to December 2017. Ambient Air Quality monitoring was carried out for PM10, PM2.5, SO2, NOx at eight locations, including the project site. Values conform to the prescribed standards for Ambient Air Quality. The incremental Ground Level Concentration (GLC) has been computed using AERMOD view model. The resultant concentrations are within the NAAQS. The modelling study proved that the air emissions from the proposed plant would not affect the ambient air quality of the region in any significant manner. The ambient air quality around the proposed project site will remain within the National Ambient Air Quality Standards (NAAQS).

Risk assessment including prediction of the worst-case scenario and maximum credible accident scenarios has been carried out. The detail proposed safeguard measures including On-Site / Off-Site Emergency Plan has been covered in the RA report.

Committee deliberated on compliance of existing CETP, Conveyance system, types of member units, inlet

norms disciplinary policy, CEMS, CER, Public hearing issues etc.

Committee noted that compliance of notices served by GPCB is not addressed by PP.

After deliberation, it was unanimously decided to consider the project for further consideration only after satisfactory submission of the following:

Compliance of SCN/Notices issued by GPCB.

Justification for proposed Size of CETP.

Analysis reports for last 1 year.

Undertaking for CEMS on final discharge line.

Action plan to achieve inlet norms from the unit & outlet norms.

PP has submitted reply for the above additional details sought vide letter on 0/02/2019.

The project was considered in SEAC meeting dated 06/02/2019.

PP has submitted their reply as below:

PP has submitted compliance of SCN/Notices issued by GPCB.

PP has submitted Justification for proposed size of CETP

PP has submitted analysis reports for last one year.

PP has submitted legal undertaking for CEMS on final discharge line.

PP has submitted action plan to achieve inlet norms from the unit & outlet norms.

During the SEAC meeting dated 06/02/2019, the said reply was considered by the Committee.

Committee found that reply submitted by PP was satisfactory.

After detailed discussion, it was decided to recommend the project to SEIAA Gujarat for grant of Environmental Clearance.

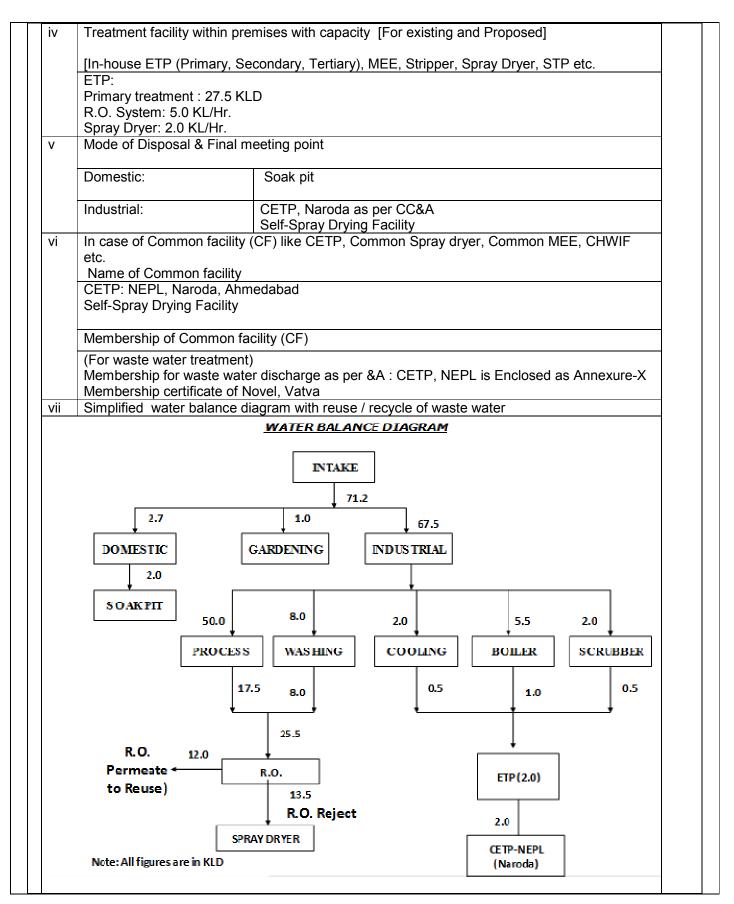
9.	SIA/GJ/IND2/28667/2018	M/s: Pasupati Industries	EC –
		Plot No. 169/1/A2, Phase –1, Near	Reconsideration
		Telephone Exchange, GIDC Naroda,	
		Ahmedabad – 382330.	

Category of the unit : 5(f) Project status: Expansion

This office has received an application vide their online proposal no. SIA/GJ/IND2/28667/2018 dated 25/12/2018 made by project proponent (PP) regarding grant of Terms of Reference [ToR] for preparation of EIA/EMP report.

Project proponent (PP) has submitted Form-1, PFR and relevant details/information.

This is an expansion unit and proposes for expansion of Synthetic Organic Chemicals manufacturing plant as tabulated below:


Sr. no.	Name of the Products	CAS no. / CI no.	Quantity MT/Month			End-use of the
			Existing	Proposed	Total	products
	MPD (Meta Phenylene Di Amine)	108-45-2	2.5	-	2.5	Dyeing & Printing
	Reactive Dyes (Navy Blue Rx. Yellow MUG)	Mixed Dyes	5.0	-	5.0	
REAC	CTIVE DYES					
	Reactive Black 8	12225-26-2	-	400	400	
	Reactive Black 31	12731-63-4				
	Reactive Black 39	-/205071				
	Reactive Black 5/Mix	12225-25-1				
	Reactive Black WNN	Mixed Dyes				
	Reactive Red 3.1	23211-47-4				
	Reactive Red 21	11099-79-9				
	Reactive Red 24.1	72829-25-5				
	Reactive Red 31	12237-00-2				
	Reactive Red 45	12226-22-1				
	Reactive Red 111	88232-20-6				
	Reactive Red 120	61951-82-4				

 Reactive Red 141	61931-52-0
Reactive Red 195	93050-79-4
Reactive Red 198	145017-98-7
Reactive Red 218	113653-03-5
Reactive Red 222	93051-45-7
Reactive Red 223	93051-43-5
Reactive Red 245	340977-00-6
Reactive Red 250	125830-49-1
Reactive Red CD	91-56-5
Reactive Yellow 15	12226-47-0
Reactive Yellow 18	12226-48-1
Reactive Yellow 42	12226-63-0
Reactive Yellow 44	12270-91-6
Reactive Yellow 57	61969-35-5
Reactive Yellow 84	61951-85-7
Reactive Yellow 85	71872-81-6
Reactive Yellow 86	61951-86-8
Reactive Yellow 95	71838-98-7
Reactive Yellow 135	77907-38-1
Reactive Yellow 145	93050-80-7
Reactive Yellow 160	129898-77-7
Reactive Yellow 186	84000-63-5
Reactive Yellow 210	Mixed Dyes
Reactive Yellow XLR	5809-16-7
Reactive Yellow HEXL	Mixture of
Troublive Tollow Filexie	59112-78-6,
	77907-38-1, &
	93050-80-7
Reactive Yellow HE4G	59112-78-6
Reactive Yellow W3R	12220-12-1
Reactive Yellow RR	93050-80-7
Reactive Orange 12	35642-64-9
Reactive Orange 13	12225-85-3
Reactive Orange 16	12225-83-1
Reactive Orange 35	12270-76-7
Reactive Orange 84	91261-29-9
Reactive Orange 107	90597-79-8
Reactive Orange 122	79809-27-1
Reactive Orange 2R	79809-27-1
Reactive Orange W3R	12220-12-1
Reactive Orange R	12220-12-1
Reactive Blue 13	12236-84-9
Reactive Blue 21	12236-86-1
Reactive Blue 39	12225-53-5
Reactive Blue 49	12236-92-9
Reactive Blue 160	71872-76-9
Reactive Blue 171	77907-32-5
Reactive Blue 194	93050-78-3
Reactive Blue 198	124448-55-1
Reactive Blue 203	147826-71-9
Reactive Blue 220	128416-19-3
Reactive Blue 221	93051-41-3
Reactive Blue 222	93051-44-6

Reactive Blue 250	93951-21-4				
Reactive Blue FNG	Mixed Dyes				
Reactive Blue XLE	2580-78-1				
Reactive Brown 11	12225-68-2				
Reactive Scarlet W2R	Mixed Dyes				
Reactive Violet 46	-/17175				
Reactive Violet ME2RL	Mixed Dyes				
Reactive Magenta MERL	Mixed Dyes				
ACID DYES	1				
Acid Black 2	80316-29-6		200	200	
Acid Black 113	3351-05-1				
Acid Black 193	12392-64-2				
Acid Black 194	61931-02-0				
Acid Black 210	99576-15-5				
Acid Black 234	157577-99-6				
Acid Black 10BX	1820-82-5				
Acid Red 97	10169-02-5				
Acid Red 131	12234-99-0				
Acid Orange 7	633-96-5				
Acid Brown 75	8011-86-7				
Acid Brown 83	13011-68-2				
Acid Brown 355	60181-77-3				
Acid Brown 425	119509-49-8				
SOLVENT DYES			42.5	42.5	
Solvent Black 5	11099-03-9				
Solvent Black 7	8005-02-5				
DIRECT DYES					
Direct Black 22	6473-13-8		150	150	
Direct Black 168	85631-88-5				
Direct Black 179	143549-91-1				
Direct Blue 71	4399-55-7				
Direct Blue 86	1330-38-7				
Direct Blue 199	12222-04-7				
Direct Orange 26	3626-36-6				
Direct Red 81	2610-11-9				
Direct Red 80	2610-10-8				
Direct Red 239	60202-35-9				
Direct Red 253	12222-51-4				
INTERMEDIATES	•	-	· · · · · · · · · · · · · · · · · · ·	l .	•
M.P.D.	108-45-2	-	50	50	Raw
Metanilic Acid	121-47-1				material
Orthanilic Acid	88-21-1				for Dyes
Quinizarine	81-64-1				
4,4 Diamino Di Phenyl	139-65-1				
Aine Sulphate					
2 Chloro, 5 Chloro Methyl	70258-18-3				
Thiozone					
Meta Ureido Aniline	59690-88-9				
					1
4 NADAPSA	91-29-2				

The project falls under Category B of project activity 5(f) as per the schedule of EIA Notification 2006. PP was called for presentation in the SEAC meeting dated 11/01/2019. Salient features of the project are as under:

Sr. 10.	Particulars				Details		
A	Total cost of Propose	ed Project			Existing: 1.0 Crores		
	(Rs. in Crores):	Proposed: 1.0 Crores Total: 2.0 Crores					
	,						
В	Total Plot area	Existing: 347	76 Sq. m.				
	(sq. meter)				Proposed:-	•	
	,				Total: 3476 S	Sq. m.	
	Green belt area				Existing:150		
	(sq. meter)				Proposed:37		
					Total:522 Sc	լ. m.	
С	Employment generat	ion			Existing: 8	_	
					Proposed: 2	2	
	Matan				Total: 30		
D	Water	I		 1	OIDOW		
i	Source of Water Sup		or cupply sta \		GIDC Water	supply	
	(GIDC Bore well, Sur Status of permission				_		
	Status of perimission	nom the concern	authority.				
ii	Water consumption (KLD)					
	Category	Existing	Proposed	Tota	al after	Remarks	
		(KLD)	(KLD)		posed(KLD)		
	Domestic	0.7	2.0	2.7	` '	-	
	Gardening	0.5	0.5	1.0		-	
	Industrial						
	Process	5.0	45.0	50.0)	-	
	Washing	1.0	7.0	8.0		-	
	Boiler	0.5	5.0	5.5		-	
	Cooling	0.0	2.0	2.0		-	
	Scrubber	0.0	2.0	2.0		-	
	Industrial Total	7.0	61.0	67.5		-	
	Total (A + B + C)	7.5	63.5	71.2	<u> </u>	-	
	Total water requirers	ont for the project	+ 71 2 KI D				
	Total water requirement Quantity to be recycle		ı. / 1.∠ KLU				
	Total fresh water req		D				
	. Star ir Sorr Water 109	O OU.Z IXI					
iii	Waste water generat	ion (KLD)					
	Category	KLD	Proposed		after	Remarks	
			(KLD)	Prop	osed(KLD)		
	Domestic	0.5	1.5	2.0		-	
	Gardening	0.0	0.0	0.0		-	
	Industrial						
	Process	0.5	17.0	17.5		-	
	Washing	1.0	7.0	8.0		-	
	Boiler	-	1.0	1.0		-	
	Cooling	-	0.5	0.5		-	
	Scrubber	-	0.5	0.5		-	
	Scrubber - 0.5 0.5			·			
	Industrial Total Total (A + B + C)	2.0	26.5	_	7.5 - 9.5 -		

L	[Source of reuse & application area] Total reuse 12 KLD								
	Total		of waste	water for re	use	with	Application area with quantity in KL	Remarks regarding .D feasibility t i.e. w/w characteris (COD, BO	stics
				GIDC Supp water Reu		12 KLD	Process: 5KL Cooling:2KLI Washing:5KL	COD: 80 n	ng/l 0 mg/l ng/l
-	- Air								
		Source emissi	posed e of on	Stack Height	Fue	l Consum	ption Proposed	Type of emissions	APCM
			apacity	(meter)				i.e. Air Pollutants	
	1.	IBR Boiler (1 Ton)	15	: 1 k or Ligr	o Waste g/hour hite : 4 hour	Agro Waste :10 kg/hour or Lignite : 50 kg/hour	Agro Waste :10 kg/hour or Lignite : 50 kg/hour	Cyclone Separator & Bag Filter
	2.	Hot Air Genera 4 Lac I	ator – 1	13			Natural Gas500 SCM/day	Natural Gas500 SCM/day	Adequate Stack Height
	3.	Hot Air Genera 4 Lac I	ator – 2	13			Natural Gas500 SCM/day	Natural Gas500 SCM/day	Adequate Stack Height
Process gas i.e. Type of pollutant gases (SO2, HCl, NH3, Cl2, NOx etc.) Existing & Proposed							IOx etc.)		
	EXISU		Specific	Source of		Type of	Stack/Vent	Air Pollution C	Control
	-	Sr No.	emissio	of the Prod		emission	Height (meter)	Measures (APCM)	

							room	
		2	Manufacturing Metanilic Acid, Qunizarinne, 4 Diamino Di Ph Amine Sulphat	n,4 enyl H	SO2<40 ng/Nm3 HCI <20 ng/Nm3	20	Water Scr Ventury S and Adeq height	
ii	- Fugiti	ve emissio	n details with i	ts mitigatio	n measure	26		
<u></u>	Proportake f Maint Trans To ca	osed project for existing aining the lastering the ferring the rry out regu		cturing of Stoject. regularly s by pumpetion and re	B. O. Dyes epair activit	&Intermediat		rings measures w
F	(as pe	rdous waster for the Haza 2016. ng & Propo	irdous and Oth	ner Wastes	(Manager	ment and Tra	nsboundar	y Movement)
İ	Sr. no.	Type/ Name of	Source of generation	Category and	(MT/An			Disposal Method
		Hazardo us waste		Schedule as per HW Rules.	Existing	g Proposed	Total	
	1.	ETP Sludge	ETP Operation	34.3	7.2 MT/ Annum	140 MT/ Annum	147.2 MT/ Annum	Collection, Storage, Transportation, Disposal at TSDF.
	2.	Used oil	Plant Machinery & DG set	5.1	0.040 MT/ Annum	0.160 MT/ Annum	0.200 MT/ Annum	Collection, Storage, Transportation, Disposal by selling to registered re processor.
	3.	Discarde d Containe rs/ Drums/ Liners	Raw material storage	33.3	50 Nos./ Annum	1200 Nos./ Annum	1250 Nos./ Annum	Collection, Storage, Decontaminatio n, Transportation, Disposal by
								selling to authorized recycler.
	4.	Iron sludge	Manufactu ring Process of Meta Urida Aniline &	26.1	24 MT/ Annum	740 MT/ Annum	764 MT/ Annum	Collection, Storage, Transportation, Disposal at TSDF.

			MPD					
	5	Evaporati on Residue	Spray Drying	36.3	-	12.0 MT/ Annum	12.0 MT/ Annum	Collection, Storage, Reusing in Blending mixing of dyes
	6	Spent Acid	Manufactu ring Process of Metanilic Acid & 4 NADAPSA	26.3	-	1200 MT/ Annum	1200 MT/ Annum	Collection, Storage, Transportation, Disposal at Novel, Vatva, Ahmedabad
ii	Membership details of TSDF, CHWIF etc. (For HW management)			Spent Acid	l: Novel S _l ent, Vatva ip certifica	Bhachau, Kutch pent Acid , Ahmedabad. ates are enclosed		
iii	Details of Non-Hazardous waste & its disposal(MSW and others)				manufactu	rer. Plastic wi	o the bricks Il be sold to the	
G	Solve	ent managen	nent, VOC en	nissions etc.		1		
i						covery. reus	e of recov	ered Solvents
	No u	se of solvent			-			
ii	VOC	emission so	urces and its	mitigation n	neasures			
ii VOC emission sources and its mitigation measures There is no any Solvent will use though we will provide closed transferring system of materials during manufacturing to avoid any VOC.				system of raw				

Technical presentation was made by the project proponent dated 11/01/2019.

Committee noted that unit has valid CC&A for existing unit. Unit is complying conditions of CC&A. PP informed that there are no court cases pending and no public complaints against the project.

It is noted that proposal is for expansion from existing capacity of 7.5 MTPM with additional production of 842.5 MTPM reaching total production capacity to 850 MTPM. PP has plot area of 3476 sq. meter. PP has proposed in house RO and spray drier for pursuing zero liquid discharge and existing waste water will be sent to CETP, Naroda without change in quality after expansion.

PP has proposed lignite 50 kg/hour for proposed addition. Committee asked PP to explore for clean fuel. After detailed discussion, it was decided to ask PP to submit the following details and after receipt of which, committee decided to consider the proposal in one of the upcoming SEAC meeting.

Details of Membership of NOVEL, Vatva with quantity for disposal of spent sulfuric acid. Latest certificate with quantity.

Justification of expansion from 7.5 MTPM to 850 MTPM of products.

PP has submitted reply for the above additional details sought vide letter on 04/02/2019.

The project was considered in SEAC meeting dated 06/02/2019.

PP has submitted their reply as below:

PP has submitted New Membership Certificate of NOVEL, Vatva for disposal of spent sulfuric acid 100 MT/Month obtained dated 12/01/2019.

PP has submitted Justification of expansion from 7.5 MTPM to 850 MTPM with area adequacy and Layout Plan.

Considering the above project details, after detailed discussion, the terms of reference (ToR) were prescribed as below and as per the standard TOR for the Synthetic Organic Chemical projects recommended by SEAC vide letter no. EIA-10-GEN-21/1480 dated 14/09/2017 and approved by SEIAA in its 12th meeting dated 16/09/2017 for the EIA study to be done covering 10 Km radial distance from the project boundary.

Compliance of MoEFCC's OM dated 01/05/2018 regarding "Corporate Environment Responsibility" (CER). Fund allocation for Corporate Environment Responsibility (CER) shall be made as per MoEFCC's O.M. No. 22-65/2017-IA.III dated 01/05/2018 for various activities therein. The details of fund allocation and activities for CER shall be incorporated in EIA/EMP report.

Explore the use of renewable energy to the maximum extent possible. Details of provisions to make the project energy-efficient through energy efficient devices and adoption of modes of alternative eco-friendly sources of energy like solar water heater, solar lighting etc. Measures proposed for energy conservation. PP shall address spent solvent with details of storage, handling and re-use under the Hazardous and other Waste (Management and Transboundary Movement) Rules 2016.

Leak Detection and Repairing Programme (LDAR) for all the volatile organic solvent proposed for use inhouse with detailed chemical properties including vapor pressure. LDAR shall endeavor prevention of losses of solvents to the best minimum extent.

PP shall furnish status of all the applicable rules, acts, regulation, clearances in a tabular form Safety precautions including flame proof electric fittings to be taken to avoid fire hazard during unloading, storage, transportation, handling and processing of Solvents

Segregation of waste water streams based on characteristics and its proper management keeping in view direction under section 18 (1) (b) of the Water (Prevention and Control of Pollution) act, 1974 issued by CPCB regarding compliance of CETP.

The TOR prescribed as above and as per the standard TOR approved by SEIAA and the model ToRs available in the MoEFCC's sector specific EIA Manual for 'Synthetic Organic Chemical Industry' shall be considered as generic TORs for preparation of the EIA report in addition to all the relevant information as per the generic structure of EIA given in Appendix III in the EIA Notification, 2006.

The project proponent shall have to apply for Environmental clearance through online portal http://environmentclearance.nic.in/ along with final EIA report.

10	SIA/GJ/IND2/18982/2017	M/s. Ramdev Chemical Industries Unit -	EC-
		II	Reconsideration
		Plot No. 3440, 3443, J-3439, 3441/A,	Refer back case
		GIDC Estate, Ankleshwar, Bharuch	

The case was referred back by the SEIAA, Gujarat vide no. SEIAA/GUJ/EC/5(f)/353/2018 dated 28/03/2018 with the following point:

To verify the project with respect to minutes of meeting of GPCB dated 07/02/2018 regarding Ankleshwar, Dahej & Vadodara region.

Earlier, this proposal was considered during the meeting dated 05/07/2018 &05/09/2018.

Committee deliberated on minutes of meeting dated 11/06/2018 of GPCB regarding dual discharge policy. Refereeing to the said MoM, Committee noted that Dual discharge policy which was discontinued earlier will be re-implemented in Ankleshwar and Panoli region with the conditions mentioned therein.

In the instant case there will be no additional discharge to CETP of M/s NCT and Existing waste water discharge to M/s NCT remain unchanged. However, Committee noted that looking to the proposed product profile i.e. CPC Blue, GPCB Circular dated 04/04/2018 shall be considered. The said circular restricts expansion of CPC blue manufacturing in Ankleshwar-Panoli area.

In view of the above, Committee unanimously decided to consider the proposal only after satisfactory submission of the following:

Compliance of GPCB Office order no. ગુપ્રનિબોર્ડ/એએનકે/સી-૬૭૭)૬/(આઈડી-૨૯૫૦૯ /૪૪૯૮૧૧dated 04/04/2018 regarding manufacturing of CPC Blue.

During the SEAC meeting dated 06/02/2019, Committee deliberated on the GPCB circular dated 04/04/2018 regarding CPC Blue.

As per said GPCB Circular, Expansion in Manufacturing of CPC – Blue is not permitted in

Ankleshwar/Panoli area due to high concentration ammonical nitrogen in FETP.

In view of the above, Committee decided to de-list this proposal no. SIA/GJ/IND2/18982/2017 on temporary basis at SEAC. This proposal will be re-opened only after satisfactory submission by PP or further order/circular from GPCB in this regards.

1	1	SIA/GJ/IND2/21454/2017	M/s. Dhanlaxmi Pigments Pvt Ltd.	EC-
			Plot No. 3020-21, GIDC Estate, Panoli,	Reconsideration
			Bharuch.	

Earlier, this proposal was considered in the SEAC meeting dated 04/04/2018 & 21/06/2018.

Committee decided to recommend the project to SEIAA Gujarat for grant of Environmental Clearance.

Meantime, Committee noted GPCB Circular dated 04/04/2018 regarding CPC Blue manufacturing. Again, during the meeting dated 05/09/2018, the proposal was considered.

Earlier, in the SEAC meeting dated 05/07/2018, Committee deliberated on minutes of meeting dated 11/06/2018 of GPCB regarding dual discharge policy. Refereeing to the said MoM, Committee noted that Dual discharge policy which was discontinued earlier will be re-implemented in Ankleshwar and Panoli region with the conditions mentioned therein.

In the instant case there will be no additional discharge to CETP of M/s PETL and Existing waste water discharge to M/s PETL remain unchanged. However, Committee noted that looking to the proposed product profile i.e. CPC Blue, GPCB Circular dated 04/04/2018 shall be considered. The said circular restricts expansion of CPC blue manufacturing in Ankleshwar-Panoli area.

In view of the above, Committee unanimously decided to consider the proposal only after satisfactory submission of the following:

Compliance of GPCB Office order no. ગુપ્રનિબોર્ડ૪૪૯૮૧૧ /૨૯૫૦૯-આઈડી/(૬)૬૭૭-સી/એએનકે/dated 04/04/2018 regarding manufacturing of CPC Blue.

During the SEAC meeting dated 06/02/2019, Committee deliberated on the GPCB circular dated 04/04/2018 regarding CPC Blue.

As per said GPCB Circular, Expansion in Manufacturing of CPC – Blue is not permitted in Ankleshwar/Panoli area due to high concentration ammonical nitrogen in FETP.

In view of the above, Committee decided to de-list this proposal no. SIA/GJ/IND2/21454/2017 on temporary basis at SEAC. This proposal will be re-opened only after satisfactory submission by PP or further order/circular from GPCB in this regards.

f	12	SIA/GJ/IND2/22182/2017	M/s. Narayan Organics Pvt Ltd.	EC-
	12	01/ V 00/11VD2/22 102/2017	, ,	
			Plot No. 1107/1 & 2, GIDC Estate	Reconsideration
			Ankleshwar-393002, Dist: Bharuch.	

Earlier this proposal was considered in the SEAC meeting dated 05/09/2018.

During the meeting, Committee unanimously decided to consider the proposal only after satisfactory submission of the following:

Compliance of GPCB Office order no. ગુપ્રનિબોર્ડ૪૪૯૮૧૧ /૨૯૫૦૯-આઈડી/(૬)૬૭૭-સી/એએનકે/dated 04/04/2018 regarding manufacturing of CPC Blue.

During the SEAC meeting dated 06/02/2019, Committee deliberated on the GPCB circular dated 04/04/2018 regarding CPC Blue.

As per said GPCB Circular, Expansion in Manufacturing of CPC – Blue is not permitted in Ankleshwar/Panoli area due to high concentration ammonical nitrogen in FETP.

In view of the above, Committee decided to de-list this proposal no. SIA/GJ/IND2/22182/2017 on temporary basis at SEAC. This proposal will be re-opened only after satisfactory submission by PP or further order/circular from GPCB in this regards.

13	SIA/GJ/IND2/18604/2017	Heubach Colour Pvt. Ltd. (Unit-1)	EC-
		Plot no: Plot No. 9002-9010, GIDC	Reconsideration

Estate, Ankleshwar, Dist:-Bharuch. Refer back case

Earlier, this proposal was considered in the SEAC meeting dated 09/10/2018.

During the meeting, Committee unanimously decided to consider the proposal only after satisfactory submission of the following:

Compliance of GPCB Office order no. ગુપ્રનિબોર્ડ/એએનકે/સી-૬૭૭(૬)/આઈડી-૨૯૫૦૯/ ૪૪૯૮૧૧dated 04/04/2018 regarding manufacturing of CPC Blue.

The proposal was again considered in the SEAC meeting dated 06/02/2018.

During the SEAC meeting dated 06/02/2019, Committee deliberated on the GPCB circular dated 04/04/2018 regarding CPC Blue.

As per said GPCB Circular, Expansion in Manufacturing of CPC – Blue is not permitted in Ankleshwar/Panoli area due to high concentration ammonical nitrogen in FETP.

In view of the above, Committee decided to de-list this proposal no. SIA/GJ/IND2/18604/2017on temporary basis at SEAC. This proposal will be re-opened only after satisfactory submission by PP or further order/circular from GPCB in this regards.

Meeting ended with thanks to the Chair.

Minutes approved by:

1.	Dr. Dinesh Misra, Chairman, SEAC	
2.	Shri S. C. Srivastav, Vice Chairman, SEAC	
3.	Shri V. N. Patel, Member, SEAC	
4.	Shri. R. J. Shah, Member, SEAC	
5.	Shri A.K. Muley, Member, SEAC	